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From many λ-calculi . . .

The λ-calculus is the model of computation underlying

functional programming languages (Haskell, OCaml, . . . )

proof assistants (Coq, Isabelle/Hol, . . . ).

Actually, there are many lambda-calculi, depending on

the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);

computational feature the calculus aims to model (e.g., pure, non-deterministic);

the type system (e.g. untyped, simply typed, second order).

The existence of N separate paradigms is troubling:

it makes each calculus appear arbitrary (is there a more canonical language?)

each time we create a new style of semantics (e.g. operational, denotational,
continuations, etc.) we always need to do it N times—once for each paradigm.
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. . . to one unifying and robust meta-theory of λ-calculi

Goal: A unifying and robust meta-theory of λ-calculi, rooted on:
1 linear logic ⇝ unifying setting for different evaluation mechanisms;
2 elementary rewriting ⇝ modular and robust approach to extensions of λ-calculi.

In this talk: focus on Point 1.

the role of linear logic;

different evaluation mechanisms.

G. Guerrieri Understanding lambda-calculus via linearity Lirica 2022/09/19 5 / 38



. . . to one unifying and robust meta-theory of λ-calculi

Goal: A unifying and robust meta-theory of λ-calculi, rooted on:
1 linear logic ⇝ unifying setting for different evaluation mechanisms;
2 elementary rewriting ⇝ modular and robust approach to extensions of λ-calculi.

In this talk: focus on Point 1.

the role of linear logic;

different evaluation mechanisms.

G. Guerrieri Understanding lambda-calculus via linearity Lirica 2022/09/19 5 / 38



The role of linear logic with respect to λ-calculi

Girard’s linear logic (1987) provides new concepts and tools to study λ-calculi:
1 denotational models of linear logic provides denotational models for λ-calculi;
2 clear notion of resource and linear consumption

f : A⊸ B ≈ f consumes a value of type A and transforms it into a value of type B;
3 quantitative analysis of computation

▶ semantic tools to study execution time (De Carvalho et al.));
▶ “compatible” with cost models (Accattoli et al.).

4 . . .

LL also hints how to modify syntax and dynamics of λ-calculi to have “good properties”.
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Call-by-Name vs. Call-by-Value (for dummies)

Call-by-Name (CbN): pass the argument to the calling function before evaluating it.

Call-by-Value (CbV): pass the argument to the calling function after evaluating it.
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(λx . x + x)(2 ∗ 3)
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Call-by-Name (CbN): pass the argument to the calling function before evaluating it.

Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

(λy .λx . x)Ω
CbN

vv
CbV

))
λx .x (λy .λx . x)Ω

CbV��
...

(Ω is a diverging program)

Summing up, CbV is eager, that is,
1 CbV is smarter than CbN when the argument must be duplicated;
2 CbV is sillier than CbN when the argument must be discarded.
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The CbN and CbV λ-calculi

λ-terms: t, s, r ::= v | ts (set: Λ)

λ-values: v ::= x | λx t (set: Λv )

Reductions: (λx t)s →β t{s/x} (CbN) (λx t)v →βv t{v/x} (CbV)

CbN and CbV λ-calculi have different operational and denotational semantics
⇝ in general, it is impossible to derive a property for CbV from CbN, or vice versa.

Examples, with I := λz .z (identity) and δ := λz .zz (duplicator):
1 (λy .I )(δδ) β-normalizes but βv -diverges

(λy .I )(δδ) →β I (λy .I )(δδ) →βv (λy .I )(δδ) →βv . . .

2 (λx .δ)(xx)δ is βv -normal but β-divergent: (λx .δ)(xx)δ →β δδ →β δδ →β . . .

Linear logic allows us to see CbN and CbV in a unifying perspective!
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The Curry-Howard-Girard correspondence

Logic Computer Science

formula ↭ type

proof ↭ program

cut-elimination ↭ evaluation

coherence ↭ termination

different encodings of ↭ different evaluation mechanisms
intuitionistic arrow in LL

⇝ Tools from intuitionistic linear logic (ILL) can be used to study properties of:

call-by-name evaluation via Girard’s translation (·)N,
call-by-value evaluation via Girard’s translation (·)V.
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The two Girard’s translations of IL into ILL (1987)

well-known translation (·)N “boring” translation (·)V

X N = X X V = X

(A → B)N = !AN ⊸ BN (A → B)V = !AV ⊸ !BV

(Γ ⊢ A)N = !ΓN ⊢ AN (Γ ⊢ A)V = !ΓV ⊢ !AV

IL

(·)N

**

(·)V

44 ILL (and then proof-nets)

simply typed Λ = IL (via Curry-Howard)

(untyped) Λ = IL + unique atomic type o + type identity o=o→o

(untyped) Λ

(·)N

o=!o⊸o **

(·)V
o=!o⊸!o

44 ILL (and then proof-nets)
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Girard’s first translation: (·)N

X N = X

(A → B)N = !AN ⊸ BN

(Γ ⊢ A)N = !ΓN ⊢ AN

(natural deduction for IL) (sequent calculus for ILL)

ax
x :A ⊢ x :A ⇝

ax
AN ⊢ AN

der
!AN ⊢ AN

Γ, x :A ⊢ M :B
→i

Γ ⊢ λx M :A → B
⇝

!ΓN, !AN ⊢ BN

`
!ΓN ⊢ !AN ⊸ BN

Γ ⊢ M :A → B ∆ ⊢ N :A
→e

Γ,∆ ⊢ MN :B
⇝

!ΓN ⊢ !AN ⊸ BN

!∆N ⊢ AN
!

!∆N ⊢ !AN
ax

BN ⊢ BN
⊗

!∆N, !AN ⊸ BN ⊢ BN

cut
!ΓN, !∆N ⊢ BN

The translation (·)N puts a ! in front of every formula on the left-hand side of ⊢
⇝ the translation of the structural rules is obvious.
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Girard’s second (“boring”) translation: (·)V

X V = X

(A → B)V = !AV ⊸ !BV

(Γ ⊢ A)V = !ΓV ⊢ !AV

(natural deduction for IL) (sequent calculus for ILL)
ax

x :A ⊢ x :A ⇝ ax
!AV ⊢ !AV

Γ, x :A ⊢ M :B
→i

Γ ⊢ λx M :A → B
⇝

!ΓV, !AV ⊢ !BV

`
!ΓV ⊢ !AV ⊸ !BV

!
!ΓV ⊢ !(!AV ⊸ !BV)

Γ ⊢ M :A → B ∆ ⊢ N :A
→e

Γ,∆ ⊢ MN :B
⇝

!ΓV ⊢ !(!AV ⊸ !BV)

!∆V ⊢ !AV
ax

!BV ⊢ !BV
⊗

!∆V, !AV ⊸ !BV ⊢ !BV

der
!∆V, !(!AV ⊸ !BV) ⊢ !BV

cut
!ΓV, !∆V ⊢ !BV

The translation (·)V puts a ! in front of every formula on the left-hand side of ⊢
⇝ the translation of the structural rules is obvious.
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An example: from IL (natural deduction) . . .

π =

ax
a :A ⊢ a :A

w
a :A, c :C ⊢ a :A

→i
a :A ⊢ λc a :C → A

ax
x :B → C ⊢ x :B → C

ax
b :B ⊢ b :B

→e
b :B, x :B → C ⊢ xb :C

→e

a :A, b :B, x :B → C ⊢ (λc a)(xb) :A

↓cut

nf(π) =

ax
a :A ⊢ a :A

w
a :A, b :B,⊢ a :A

w
a :A, b :B, x :B → C ⊢ a :A
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Curry-Howard: (λc a)(xb) →β a
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An example: from IL (natural deduction) . . .

intuit. logic (IL):

Curry−Howard

��

π
cut
∗//

(·)

��

nf(π)

(·)

��
λ-calculus: π

β

∗// nf(π) = nf(π)
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An example: . . . to ILL via (·)N

πN =
ax

A ⊢ A
der

!A ⊢ A
w

!A, !C ⊢ A `
!A ⊢ !C ⊸ A

ax
!B ⊸ C ⊢ !B ⊸ C

der
!(!B ⊸ C) ⊢ !B ⊸ C

ax
B ⊢ B

der
!B ⊢ B

!
!B ⊢ !B

ax
C ⊢ C

⊗
!B, !B ⊸ C ⊢ C

cut
!B, !(!B ⊸ C) ⊢ C

!
!B, !(!B ⊸ C) ⊢ !C

ax
A ⊢ A

⊗
!C ⊸ A, !B, !(!B ⊸ C) ⊢ A

cut
a :!A, b :!B, x :!(!B ⊸ C) ⊢ (λc a)(xb) :A

cut↓+

nf(πN) =

ax
a :A ⊢ a :A

der
a :!A ⊢ a :A
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(λc a)(xb) →βv a[xb/c] (i.e. let c :=xb in a) ≈ (λc a)(xb) . . . boring (according to Girard).

But a[xb/c] is βv -normal!
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Call-by-name vs. call-by-value from a Linear Logic point of view (1 of 2)

In the λ-calculus there are two evaluation mechanisms:

call-by-name (CbN, β-reduction): no restriction in firing a β-redex;

call-by-value (CbV, βv -reduction): a β-redex (λx t)s can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates

{
β-reduction via the translation (·)N

βv -reduction via the translation (·)V

via (·)N every argument is translated by a box
⇝ every argument can be duplicated or discarded (CbN discipline);

via (·)V every (and only) abstraction or variable is translated by a box
⇝ only abstraction or variable can be duplicated or discarded (CbV discipline).

The two Girard’s logical translations can explain the two different evaluation mechanisms
inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.
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Call-by-name vs. call-by-value from a Linear Logic point of view (2 of 2)

ILL (and proof-nets) syntax is extremely expressive and powerful, but it is too general for
the computational purpose of representing purely functional programs.

Question: Can we internalize the two Girard’s translations in a variant of the λ-calculus?

Yes! There are several examples in the literature, e.g.

Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John
Maraist, Martin Odersky, David Turner, and Philip Wadler. MFPS, 1995.

Idea: Let linear logic guide the study and design of models of computation.

We propose here an alternative solution, the bang calculus: it differs from the linear
λ-calculi of Maraist et al. for some technical aspects.

All the “good” results proved for Maraist et al.’s linear λ-calculus hold also for the bang
calculus, and in a “better” way.
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Syntax and reduction rules of the bang calculus

Syntax:

Terms T ,S ,R ::= x | T ! | λx T | TS | derT (set: !Λ)

Reduction rules:

(λx T )S ! 7→λ T{S/x} der(T !) 7→d T 7→b := 7→λ ∪ 7→d

For any r ∈ {λ, d, b},
r-reduction →r is the closure under any contexts of 7→r (it fires any r-redex);

ground r-reduction (or rg-reduction) →rg does not fire r-redexes under !.

Idea: only boxes T ! are duplicable and discardable (⇝ linear logic).

Proposition (confluence; G. & Ehrhard, 2016)

→bg is diamond and →b is confluent.
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The bang calculus and LL proof-nets

The bang calculus gives a nice decomposition of the two Girard’s translations (·)N and (·)V.

(untyped) Λ

(·)N

o=!o⊸o **

(·)V
o=!o⊸!o

44 ILL (and then proof-nets)

Rmk (Ehrhrard, 2016): Bang calculus ≈ untyped version of Levy’s Call-by-Push-Value:

(·)! ≈ thunk

der ≈ force
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Denotational models for LL

A denotational model for LL is given by:
1 a symmetric monoidal closed category (L,⊗, 1, λ, ρ, α, σ); we use X ⊸ Y for the

object of linear morphisms from X to Y ;
2 L is cartesian with terminal object ⊤ and product &;

L is cocartesian with initial object 0 and coproduct ⊕;
3 a comonad !_ : L → L with counit derX ∈ L(!X ,X ) (dereliction) and

comultiplication digX ∈ L(!X , !!X ) (digging);
4 . . .

Specific assumption: the unique morphism in L(0,⊤) is an iso; to simplify, 0 = ⊤.
(this assumption is fulfilled by many models of LL: relational, coherent, Scott, etc.)

G. Guerrieri Understanding lambda-calculus via linearity Lirica 2022/09/19 22 / 38



Denotational models for LL

A denotational model for LL is given by:
1 a symmetric monoidal closed category (L,⊗, 1, λ, ρ, α, σ); we use X ⊸ Y for the

object of linear morphisms from X to Y ;
2 L is cartesian with terminal object ⊤ and product &;

L is cocartesian with initial object 0 and coproduct ⊕;
3 a comonad !_ : L → L with counit derX ∈ L(!X ,X ) (dereliction) and

comultiplication digX ∈ L(!X , !!X ) (digging);
4 . . .

Specific assumption: the unique morphism in L(0,⊤) is an iso; to simplify, 0 = ⊤.
(this assumption is fulfilled by many models of LL: relational, coherent, Scott, etc.)

G. Guerrieri Understanding lambda-calculus via linearity Lirica 2022/09/19 22 / 38



Denotational models for the bang calculus built from LL

To have a model of the–untyped–bang calculus, take a retraction: an object U such that

!U & (!U ⊸ U) ◁ U

Rmk (retractions): It follows that !U ◁ U and
1 !U ⊸ U ◁ U (semantic CbN version of o → o = o);
2 !U ⊸ !U ◁ U (semantic CbV version of o → o = o).

A term T with x⃗ = (x1, . . . , xn) ⊇ fv(T ) is interpreted by a morphism JT Kx⃗ : (!U)⊗n → U .
The (omitted) definition is by induction on T , using the morphisms in L sketched before.

Theorem (invariance under reduction; G. & Ehrhard 2016)

Let T , S ∈ !Λ and fv(T ) ⊆ x⃗ . If T →b S then JT Kx⃗ = JSKx⃗ .
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Embedding CbN and CbV λ-calculi into the bang calculus

We can internalize the two Girard’s translations into the bang calculus:

CbN translation (·)n : Λ → !Λ CbV translation (·)v : Λ → !Λ

xn = x xv = x !

(λx t)n = λx tn (λx t)v = (λx tv)!

(ts)n = tn(sn)! (ts)v = (der tv)sv

The difference between (·)n and (·)v is only where (·)! and der are placed.

Idea: in CbN any argument is duplicable and discardable, in CbV only λ’s and variables.

Lemma (translations commute with substitution)

Let t and s be λ-terms.
1 One has that tn{sn/x} = (t{s/x})n.
2 If s is such that sv = R ! for some R ∈ !Λ, then tv{R/x} = (t{s/x})v.
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The bang calculus is a conservative extension of CbN and CbV λ-cacluli

Theorem (Sound and complete simulations; G. & Manzonetto, 2018)

Let t be a λ-term.
1 Conservative extension of CbN λ-calculus:

Soundness: If t →β t′ then tn →λ t′
n (and tn →b t′

n);
Completeness: If tn →b S then tn →λ S = t′

n and t →β t′ for some λ-term t′.

2 Conservative extension of CbV λ-calculus:
Soundness: If t →βv t′ then tv →d→λ t′

v (and hence tv →b→b t′
v);

Completeness: If tv →d→λ S then S = t′
v and t →βv t′ for some λ-term t′.

These simulations are:

modular: the ground CbX λ-calculus is simulated in the ground bang calculus
(ground CbN = head reduction, ground CbV = weak reduction);

quantitative sensitive: one β-step is simulated by one λ-step, and conversely.

In other linear λ-calculi, completeness of CBV translation fails!
⇝ A step in the CbV fragment of those calculi need not correspond to a βv -step.
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Completeness: If tn →b S then tn →λ S = t′

n and t →β t′ for some λ-term t′.

2 Conservative extension of CbV λ-calculus:
Soundness: If t →βv t′ then tv →d→λ t′

v (and hence tv →b→b t′
v);

Completeness: If tv →d→λ S then S = t′
v and t →βv t′ for some λ-term t′.

These simulations are:

modular: the ground CbX λ-calculus is simulated in the ground bang calculus
(ground CbN = head reduction, ground CbV = weak reduction);

quantitative sensitive: one β-step is simulated by one λ-step, and conversely.

In other linear λ-calculi, completeness of CBV translation fails!
⇝ A step in the CbV fragment of those calculi need not correspond to a βv -step.
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The target of the CbN translation in the bang calculus

target of CbN translation into !Λ: T , S ::= x | TS ! | λx T (set: !Λn)

Rmk: tn ∈ !Λn for any t ∈ Λ, and conversely, for any T ∈ !Λn, T n = t for some t ∈ Λ.

Rmk: In !Λn, the construct der never occurs ⇝ in !Λn, hence →λ =→b.

⇝ The CbN λ-calculus is isomorphic to the fragment !Λn of the bang calculus.

Λ ∋ t β //

(·)n

��

s ∈ Λ

(·)n

��
!Λ ∋ tn b // sn ∈ !Λ

Corollary (Preservations with respect to CbN λ-calculus; G. & Manzonetto, 2018)

1 (CbN equational theory) Let t, s ∈ Λ: t ≃β s iff tn ≃b sn.

2 (CbN normal forms) Let t ∈ Λ: t is β-normal iff tn is b-normal.
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The target of the CbV translation in the bang calculus

target of CbV translation into !Λ: M,N ::= U ! | derMN | UM (set: !Λv)

U ::= x | λx M (set: !Λv
v ).

Rmk: For any t ∈ Λ, tv ∈ !Λv; in particular, for any v ∈ Λv , v v = U ! for some U ∈ !Λv
v .

The converse fails: (λx xx)v = ∆′ →d ∆, where ∆ is b-normal and ̸ ∃ λ-term t : tv = ∆.
Note that λx xx is βv -normal but (λx xx)v = ∆′ is not b-normal.

⇝ The CbV λ-calculus is “morally” isomorphic to the fragment !Λv of the bang calculus.

Λ ∋ t βv //

(·)v

��

s ∈ Λ

(·)v

��
!Λ ∋ tv b // sv ∈ !Λ

Corollary (Preservations with respect to CbV λ-calculus; G & Manzonetto, 2018)

1 (CbV equational theory) Let t, s ∈ Λ: t ≃βv s iff tv ≃b sv.

This is false in other linear λ-calculi!
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Factorization of the semantics of CBN λ-calculus (G. & Manzonetto, 2018)

Retraction !U ⊸ U ◁ U in L lifts to a retraction !U ⊸ U ◁ U in L! (co-Kleisli of L via !)
⇝ any denotational model U of the bang calculus is a denotat. model of CbN λ-calculus.

[t]nx⃗ = usual CbN interpretation of a λ-term t in U .
JtnKx⃗ = bang interpretation of the CbN translation of a λ-term t in U .

Question: For a λ-term t, what is the relationship between [t]n and JtnK?

Theorem (Factorization of any denotational semantics of CBN λ-calculus)

For every λ-term t, [t]nx⃗ = JtnKx⃗ (up to Seely’s isos).

Λ ∋ t [·]n //

(·)n
''

[t]n = JtnK ∈ U

⟳

tn ∈ !Λ

J·K
55
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Factorization of the semantics of CbV λ-calculus? (G. & Manzonetto, 2018)

The functor ! is a strong monad on the Kleisli category L! ⇝ retraction !U ⊸ !U ◁ U
⇝ any denotational model U of the bang calculus is a denotat. model of CbV λ-calculus.

[t]vx⃗ = usual CbV interpretation of a λ-term t in U .
JtvKx⃗ = bang interpretation of the CbV translation of a λ-term t in U .

Question: For a λ-term t, what is the relationship between [t]v and JtvK?

Theorem (Non-factorization of some denotational semantics of CbV λ-calculus)

In the relational semantics, there is a λ-term t such that [t]vx⃗ ⊊ JtvKx⃗ .

Λ ∋ t [·]v //

(·)v

&&

[t]v ̸= JtvK ∈ U

̸⟳

tv ∈ !Λ

J·K
66

Conjecture: There still exists a relationship in CbV between [t]v and JtvK, but it should be
more sophisticated than in CbN. Maybe we should use logical relations between the two.

G. Guerrieri Understanding lambda-calculus via linearity Lirica 2022/09/19 31 / 38



Factorization of the semantics of CbV λ-calculus? (G. & Manzonetto, 2018)

The functor ! is a strong monad on the Kleisli category L! ⇝ retraction !U ⊸ !U ◁ U
⇝ any denotational model U of the bang calculus is a denotat. model of CbV λ-calculus.

[t]vx⃗ = usual CbV interpretation of a λ-term t in U .
JtvKx⃗ = bang interpretation of the CbV translation of a λ-term t in U .

Question: For a λ-term t, what is the relationship between [t]v and JtvK?

Theorem (Non-factorization of some denotational semantics of CbV λ-calculus)

In the relational semantics, there is a λ-term t such that [t]vx⃗ ⊊ JtvKx⃗ .

Λ ∋ t [·]v //

(·)v

&&

[t]v ̸= JtvK ∈ U

̸⟳

tv ∈ !Λ

J·K
66

Conjecture: There still exists a relationship in CbV between [t]v and JtvK, but it should be
more sophisticated than in CbN. Maybe we should use logical relations between the two.

G. Guerrieri Understanding lambda-calculus via linearity Lirica 2022/09/19 31 / 38



Outline

1 Introduction: lambda-calculi and a unifying meta-theory

2 Girard’s two translations: from proof theory to computation

3 The bang calculus: its syntax and semantics

4 Embedding CbN and CbV λ-calculi into the bang calculus, syntactically

5 Embedding CBN and CBV λ-calculi into the bang calculus, semantically

6 Conclusions

G. Guerrieri Understanding lambda-calculus via linearity Lirica 2022/09/19 32 / 38



Conclusions (and motivations)

1 The existence of two separate paradigms (CbN and CbV λ-calculi) is troubling:
▶ it makes each language appear arbitrary (a unified language might be more canonical);
▶ each time we create a new style of semantics (e.g. operational semantics, continuation

semantics, Scott semantics, game semantics, etc.) we always need to do it twice.

2 The bang calculus is a general setting to compare CbN and CbV λ-calculi in the
same rewriting system and with the same denotational semantics.

▶ CbN λ-calculus has a rich and refined theory featuring advanced concepts such as
separability, solvability, Böhm trees, classification of λ-theories, full-abstraction, etc.

▶ This is not the case for CbV λ-calculus: in the CbV counterpart of these theoretical
notions there are only partial and not satisfactory results (or do not exist at all!).

▶ These theoretical notions and results well studied for the CbN λ-calculus might be
adapted and studied in the more general setting of the bang calculus ⇝ compelling
point of view to analyze the corresponding notions for CbV λ-calculus.
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Some results obtained so far (1 of 3)

1 Factorization theorem proved once and for all in the bang calculus:

T →∗
b S =⇒ T →∗

bg→
∗
¬bg S

⇝ By translation in CbN and CbV λ-calculi:

t →∗
β s =⇒ t →∗

βg→
∗
¬βg s t →∗

βv s =⇒ t →∗
βv
g
→∗

¬βv
g
s

(Faggian, G., FoSSaCS 2021)

2 Normalization theorem proved once and for all in the bang calculus:

T →∗
b S with S normal =⇒ T →∗

ℓℓ S

⇝ By translation in the CbN and CbV λ-calculi:

t →∗
β s with s normal =⇒ t →∗

ℓℓ s t →∗
βv s with s normal =⇒ t →∗

ℓℓ s

(Faggian, G., FoSSaCS 2021)
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Some results obtained so far (2 of 3)

3 Characterization of ground normalization proved once and for all in bang calculus:

JT Kx⃗ is non-trivial ⇐⇒ T is bg-normalizable

⇝ By translation in CbN and CbV λ-calculi:

[t]nx⃗ is non-trivial ⇐⇒ t is βg-normalizable

[t]vx⃗ is non-trivial ⇐⇒ t is βv
g -normalizable

(Bucciarelli, Kesner, Rios, Viso, FLOPS 2020)

4 Denotational semantics of the bang calculus via intersection distributors.
⇝ bi-categorical setting for a proof-relevant semantics.

JT Kx⃗ =

{
π̃

∣∣∣∣ .... π

Γ ⊢ T : a

}

(G., Olimpieri, CSL 2021)
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Some results obtained so far (3 of 3)

In non-idempotent intersection type systems for λ-calculi, typability is undecidable.

Question: Is the inabitation problem decidable in the bang calculus?

Given an typing context Γ and a multi type M, is there a term t such that

Γ ⊢ t : M is derivable?

Question bis: Same question, but in the CbN and CbV λ-calculi.

Answer [ArrKesGue23]: Yes, it is decidable an we can find all the inhabitants!
And if we restrict the search space of our algorithm to:

the CbN fragment of the bang calculus ⇝ we decide inhabitation in CbN;

the CbV fragment of the bang calculus ⇝ we decide inhabitation in CbV.
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The big open question

Call-by-Need is another evaluation mechanism (e.g., used by Haskell):

as smart as CbV for duplication,

as smart as CbN for erasure.

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need?

Question bis: Is there a general framework subsuming CbV, CbN and CbNeed?

Idea: We should split the ! comonad into two:

one for duplication;

one for erasure.
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Thank you!

Questions?
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