Understanding the λ-calculus via (non-)linearity and rewriting

Giulio Guerrieri

Aix-Marseille Université, LIS UMR 7020, Lirica (Marseille, France)

Lirica seminars

Marseille (France), September 19, 2022

Outline

(1) Introduction: lambda-calculi and a unifying meta-theory
(2) Girard's two translations: from proof theory to computation
(3) The bang calculus: its syntax and semantics
(4) Embedding CbN and $\mathrm{CbV} \lambda$-calculi into the bang calculus, syntactically
(5) Embedding CBN and CBV λ-calculi into the bang calculus, semantically
(6) Conclusions

Outline

(1) Introduction: lambda-calculi and a unifying meta-theory
(2) Girard's two translations: from proof theory to computation
(3) The bang calculus: its syntax and semantics
4) Embedding CbN and $\mathrm{CbV} \lambda$-calculi into the bang calculus, syntactically
(5) Embedding CBN and CBV λ-calculi into the bang calculus, semantically
(6) Conclusions
G. Guerrieri

From many λ-calculi ...

The λ-calculus is the model of computation underlying

- functional programming languages (Haskell, OCaml, ...)
- proof assistants (Coq, Isabelle/Hol, ...).

Actually, there are many lambda-calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- computational feature the calculus aims to model (e.g., pure, non-deterministic);
- the type system (e.g. untyped, simply typed, second order).

The existence of N separate paradigms is troubling:

- it makes each calculus annear arbitrary (is there a more canonical language?)
- each time we create a new style of semantics (e.g. operational, denotational, continuations, etc.) we always need to do it N times-once for each paradigm.

From many λ-calculi ...

The λ-calculus is the model of computation underlying

- functional programming languages (Haskell, OCaml, ...)
- proof assistants (Coq, Isabelle/Hol, ...).

Actually, there are many lambda-calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- computational feature the calculus aims to model (e.g., pure, non-deterministic);
- the type system (e.g. untyped, simply typed, second order).

The existence of N separate paradigms is troubling:

- it makes each calculus annear arbitrary (is there a more canonical language?)
- each time we create a new style of semantics (e.g. operational, denotational, continuations, etc.) we always need to do it N times-once for each paradigm.

From many λ-calculi ...

The λ-calculus is the model of computation underlying

- functional programming languages (Haskell, OCaml, ...)
- proof assistants (Coq, Isabelle/Hol, ...).

Actually, there are many lambda-calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- computational feature the calculus aims to model (e.g., pure, non-deterministic);
- the type system (e.g. untyped, simply typed, second order).

The existence of N separate paradigms is troubling:

- it makes each calculus appear arbitrary (is there a more canonical language?)
- each time we create a new style of semantics (e.g. operational, denotational, continuations, etc.) we always need to do it N times-once for each paradigm.
\ldots to one unifying and robust meta-theory of λ-calculi

Goal: A unifying and robust meta-theory of λ-calculi, rooted on:
(1) linear logic \rightsquigarrow unifying setting for different evaluation mechanisms;
(2) elementary rewriting \rightsquigarrow modular and robust approach to extensions of λ-calculi.

In this talk: focus on Point 1

- the role of linear logic;
- different evaluation mechanisms.
\ldots to one unifying and robust meta-theory of λ-calculi

Goal: A unifying and robust meta-theory of λ-calculi, rooted on:
(1) linear logic \rightsquigarrow unifying setting for different evaluation mechanisms;
(2) elementary rewriting \rightsquigarrow modular and robust approach to extensions of λ-calculi.

In this talk: focus on Point 1.

- the role of linear logic;
- different evaluation mechanisms.

The role of linear logic with respect to λ-calculi

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
(3) clear notion of resource and linear consumption
$f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
(3) quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.)

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties"

The role of linear logic with respect to λ-calculi

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
(2) clear notion of resource and linear consumption $f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
© quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.).

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties"

The role of linear logic with respect to λ-calculi

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
(2) clear notion of resource and linear consumption $f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
(3) quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.).

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties"

The role of linear logic with respect to λ-calculi

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
(2) clear notion of resource and linear consumption $f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
(3) quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.).
© ...

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties"

The role of linear logic with respect to λ-calculi

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
(2) clear notion of resource and linear consumption $f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
(3) quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.).
© ...

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties".

Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

(Ω is a diverging program)

Summing up, CbV is eager, that is,
(1) CbV is smarter than CbN when the argument must be duplicated;
(2) CbV is sillier than CbN when the argument must be discarded.

The CbN and CbV λ-calculi

$$
\begin{array}{rrrl}
\lambda \text {-terms: } & t, s, r::=v \mid t s & & \text { (set: } \Lambda \text {) } \\
\lambda \text {-values: } & v::=x \mid \lambda x t & & \left(\text { set: } \Lambda_{v}\right)
\end{array}
$$

Reductions: $\quad(\lambda x t) s \rightarrow_{\beta} t\{s / x\}(\mathrm{CbN}) \quad(\lambda x t) v \rightarrow_{\beta^{v}} t\{v / x\}(\mathrm{CbV})$

CbN and $\mathrm{CbV} \lambda$-calculi have different operational and denotational semantics \rightsquigarrow in general, it is impossible to derive a property for CbV from CbN, or vice versa

Examples, with $I:=\lambda z . z$ (identity) and $\delta:=\lambda z . z z$ (duplicator):
(3) $(\lambda y . I)(\delta \delta) \beta$-normalizes but β_{v}-diverges

$$
(\lambda y . I)(\delta \delta) \rightarrow_{\beta} I \quad(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}}(\lambda y . I)(\delta \delta) \rightarrow_{\beta}
$$

(2) $(\lambda x . \delta)(x x) \delta$ is β_{v}-normal but β-divergent: $(\lambda x . \delta)(x x) \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta}$

The CbN and CbV λ-calculi

$$
\begin{array}{rrrl}
\lambda \text {-terms: } & t, s, r::=v \mid t s & & \text { (set: } \Lambda \text {) } \\
\lambda \text {-values: } & v::=x \mid \lambda x t & & \left(\text { set: } \Lambda_{v}\right)
\end{array}
$$

Reductions: $\quad(\lambda x t) s \rightarrow_{\beta} t\{s / x\}(\mathrm{CbN}) \quad(\lambda x t) v \rightarrow_{\beta^{v}} t\{v / x\}(\mathrm{CbV})$

CbN and $\mathrm{CbV} \lambda$-calculi have different operational and denotational semantics \rightsquigarrow in general, it is impossible to derive a property for CbV from CbN, or vice versa

Examples, with $I:=\lambda z . z$ (identity) and $\delta:=\lambda z . z z$ (duplicator):
(3) $(\lambda y . I)(\delta \delta) \beta$-normalizes but β_{v}-diverges

$$
(\lambda y . I)(\delta \delta) \rightarrow_{\beta} I \quad(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}}(\lambda y . I)(\delta \delta) \rightarrow_{\beta}
$$

(2) $(\lambda x . \delta)(x x) \delta$ is β_{v}-normal but β-divergent: $(\lambda x . \delta)(x x) \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta}$

The CbN and $\mathrm{CbV} \lambda$-calculi

$$
\begin{array}{rrrl}
\lambda \text {-terms: } & t, s, r::=v \mid t s & & \text { (set: } \Lambda \text {) } \\
\lambda \text {-values: } & v & :=x \mid \lambda x t & \left(\text { set: } \Lambda_{v}\right)
\end{array}
$$

Reductions: $\quad(\lambda x t) s \rightarrow_{\beta} t\{s / x\}(\mathrm{CbN}) \quad(\lambda x t) v \rightarrow_{\beta^{v}} t\{v / x\}(\mathrm{CbV})$

CbN and $\mathrm{CbV} \lambda$-calculi have different operational and denotational semantics \rightsquigarrow in general, it is impossible to derive a property for CbV from CbN, or vice versa.

Examples, with $I:=\lambda z . z$ (identity) and $\delta:=\lambda z . z z$ (duplicator)
(1) $(\lambda y . I)(\delta \delta) \beta$-normalizes but β_{v}-diverges

$$
(\lambda y . I)(\delta \delta) \rightarrow_{\beta} I \quad(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}}(\lambda y . I)(\delta \delta) \rightarrow_{\beta}
$$

(2) $(\lambda x . \delta)(x x) \delta$ is β_{v}-normal but β-divergent: $(\lambda x . \delta)(x x) \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta}$

The CbN and $\mathrm{CbV} \lambda$-calculi

$$
\lambda \text {-terms: } \quad t, s, r::=v \mid t s
$$

λ-values: $\quad v::=x \mid \lambda x t$

Reductions: $\quad(\lambda x t) s \rightarrow_{\beta} t\{s / x\}(\mathrm{CbN}) \quad(\lambda x t) v \rightarrow_{\beta^{v}} t\{v / x\}(\mathrm{CbV})$

CbN and $\mathrm{CbV} \lambda$-calculi have different operational and denotational semantics \rightsquigarrow in general, it is impossible to derive a property for CbV from CbN, or vice versa.

Examples, with $I:=\lambda z . z$ (identity) and $\delta:=\lambda z . z z$ (duplicator):
(1) $(\lambda y . I)(\delta \delta) \beta$-normalizes but β_{V}-diverges

$$
(\lambda y . I)(\delta \delta) \rightarrow_{\beta} I \quad(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}}(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}} \ldots
$$

(2) $(\lambda x . \delta)(x x) \delta$ is β_{v}-normal but β-divergent: $(\lambda x . \delta)(x x) \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \ldots$
Linear logic allows us to see CbN and CbV in a unifying perspective!

The CbN and $\mathrm{CbV} \lambda$-calculi

$$
\lambda \text {-terms: } \quad t, s, r::=v \mid t s
$$

λ-values: $\quad v::=x \mid \lambda x t$

Reductions: $\quad(\lambda x t) s \rightarrow_{\beta} t\{s / x\}(\mathrm{CbN}) \quad(\lambda x t) v \rightarrow_{\beta^{v}} t\{v / x\}$ (CbV)

CbN and $\mathrm{CbV} \lambda$-calculi have different operational and denotational semantics \rightsquigarrow in general, it is impossible to derive a property for CbV from CbN, or vice versa.

Examples, with $I:=\lambda z . z$ (identity) and $\delta:=\lambda z . z z$ (duplicator):
(1) $(\lambda y . I)(\delta \delta) \beta$-normalizes but β_{V}-diverges

$$
(\lambda y . I)(\delta \delta) \rightarrow_{\beta} I \quad(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}}(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}} \ldots
$$

(2) $(\lambda x . \delta)(x x) \delta$ is β_{v}-normal but β-divergent: $(\lambda x . \delta)(x x) \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \ldots$

Linear logic allows us to see CbN and CbV in a unifying perspective!

Outline

(1) Introduction: lambda-calculi and a unifying meta-theory
(2) Girard's two translations: from proof theory to computation
(3) The bang calculus: its syntax and semantics
4) Embedding CbN and $\mathrm{CbV} \lambda$-calculi into the bang calculus, syntactically
(5) Embedding CBN and CBV λ-calculi into the bang calculus, semantically
(6) Conclusions

The Curry-Howard-Girard correspondence

Logic Computer Science formula $4 \rightarrow$ type
proof \leadsto program
cut-elimination $\longleftrightarrow \rightsquigarrow$ evaluation
coherence $\longleftrightarrow \nrightarrow$ termination

different encodings of $\longleftrightarrow>$ different evaluation mechanisms intuitionistic arrow in LL

Tools from intuitionistic linear logic (ILL) can be used to study properties of:

- call-by-name evaluation via Girard's translation (.) ${ }^{\mathbb{N}}$.
- call-by-value evaluation via Girard's translation (.) ${ }^{\text {v }}$.

The Curry-Howard-Girard correspondence

Logic		Computer Science
formula	\longleftrightarrow	type
proof	\longleftrightarrow	program
cut-elimination	\longleftrightarrow	evaluation
coherence	\longleftrightarrow	termination
ent encodings of	\longleftrightarrow	different evaluation mechanisms

Tools from intuitionistic linear logic (ILL) can be used to study properties of:

- call-by-name evaluation via Girard's translation (.) ${ }^{N}$,
- call-by-value evaluation via Girard's translation (

The Curry-Howard-Girard correspondence

Logic		Computer Science
formula	\longleftrightarrow	type
proof	\longleftrightarrow	program
cut-elimination	\longleftrightarrow	evaluation
coherence	\longleftrightarrow	termination

different encodings of $\longleftrightarrow \Longleftrightarrow$ different evaluation mechanisms intuitionistic arrow in LL
\rightsquigarrow Tools from intuitionistic linear logic (ILL) can be used to study properties of:

- call-by-name evaluation via Girard's translation $(\cdot)^{\mathrm{N}}$,
- call-by-value evaluation via Girard's translation $(\cdot)^{\mathrm{V}}$.

The two Girard's translations of IL into ILL (1987)
well-known translation $(\cdot)^{N}$

$$
x^{\mathbb{N}}=X
$$

$$
(A \rightarrow B)^{\mathbb{N}}=!A^{\mathbb{N}} \multimap B^{\mathbb{N}}
$$

$$
(\Gamma \vdash A)^{\mathbb{N}}=!^{\mathbb{N}} \vdash A^{\mathbb{N}}
$$

The two Girard's translations of IL into ILL (1987)

well-known translation $(\cdot)^{N}$

$$
\begin{aligned}
X^{\mathbb{N}} & =X \\
(A \rightarrow B)^{\mathbb{N}} & =!A^{\mathbb{N}} \multimap B^{\mathbb{N}} \\
(\Gamma \vdash A)^{\mathbb{N}} & =!\Gamma^{\mathbb{N}} \vdash A^{\mathbb{N}}
\end{aligned}
$$

"boring" translation $(\cdot)^{V}$

$$
X^{V}=X
$$

$$
(A \rightarrow B)^{V}=!A^{V} \multimap!B^{V}
$$

$$
(\Gamma \vdash A)^{V}=!\Gamma^{V} \vdash!A^{V}
$$

simply typed $\Lambda=\mathrm{IL}$ (via Curry-Howard)
(untyped) $\Lambda=\mathrm{IL}+$ unique atomic type $o+$ type identity $o=0 \rightarrow 0$

Girard's first translation: $(\cdot)^{N}$

$$
\begin{aligned}
X^{\mathbb{N}} & =X \\
(A \rightarrow B)^{\mathbb{N}} & =!A^{\mathbb{N}} \multimap B^{\mathbb{N}} \\
(\Gamma \vdash A)^{\mathbb{N}} & =!\Gamma^{\mathbb{N}} \vdash A^{\mathbb{N}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (natural deduction for IL) (sequent calculus for ILL) } \\
& \overline{A \vdash \times A} \text { ax } \rightsquigarrow \frac{\overline{A^{\mathbb{N}} \vdash A^{\mathrm{N}}}}{!^{\mathrm{N}} \vdash A^{\mathrm{N}}} \text { ax } d e r \\
& \frac{\Gamma, A \vdash M B}{\Gamma \vdash \lambda \times M A \rightarrow B} \rightarrow_{i} \rightsquigarrow \frac{!\Gamma^{\mathbb{N}},!A^{\mathbb{N}} \vdash B^{\mathbb{N}}}{!\Gamma^{\mathbb{N}} \vdash!A^{\mathrm{N}} \multimap B^{\mathbb{N}}} \ngtr
\end{aligned}
$$

The translation $(\cdot)^{\mathbb{N}}$ puts a ! in front of every formula on the left-hand side of \vdash \rightsquigarrow the translation of the structural rules is obvious.

Girard's first translation: $(\cdot)^{N}$

$$
\begin{aligned}
& X^{\mathbb{N}}=X \\
& (A \rightarrow B)^{\mathbb{N}}=!A^{\mathbb{N}} \multimap B^{\mathbb{N}} \\
& (\Gamma \vdash A)^{\mathbb{N}}=!\Gamma^{\mathbb{N}} \vdash A^{N} \\
& \text { (natural deduction for IL) (sequent calculus for ILL) } \\
& \overline{x: A \vdash x: A} \text { ax } \rightsquigarrow \frac{\overline{A^{\mathbb{N}} \vdash A^{\mathrm{N}}}}{!A^{\mathbb{N}} \vdash A^{\mathrm{N}}} \text { ax } d e r \\
& \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda \times M: A \rightarrow B} \rightarrow_{i} \rightsquigarrow \frac{!\Gamma^{\mathbb{N}},!A^{\mathbb{N}} \vdash B^{\mathbb{N}}}{!\Gamma^{\mathbb{N}} \vdash!A^{\mathbb{N}} \multimap B^{\mathbb{N}}} \ngtr \\
& \frac{\Gamma \vdash M: A \rightarrow B \quad \Delta \vdash N: A}{\Gamma, \Delta \vdash M N: B} \rightarrow_{e}
\end{aligned}
$$

The translation $(\cdot)^{\mathbb{N}}$ puts a ! in front of every formula on the left-hand side of \vdash \rightsquigarrow the translation of the structural rules is obvious.

Girard's second ("boring") translation: (. $)^{\mathrm{V}}$

$$
\begin{aligned}
X^{V} & =X \\
(A \rightarrow B)^{V} & =!A^{V} \multimap!B^{V} \\
(\Gamma \vdash A)^{V} & =!\Gamma^{V} \vdash!A^{V}
\end{aligned}
$$

The translation $(\cdot)^{V}$ puts a ! in front of every formula on the left-hand side of \vdash \rightsquigarrow the translation of the structural rules is obvious.

Girard's second ("boring") translation: (. $)^{\mathrm{V}}$

$$
\begin{aligned}
X^{V} & =X \\
(A \rightarrow B)^{V} & =!A^{V} \multimap!B^{V} \\
(\Gamma \vdash A)^{V} & =!\Gamma^{V} \vdash!A^{V}
\end{aligned}
$$

The translation $(\cdot)^{V}$ puts a ! in front of every formula on the left-hand side of \vdash \rightsquigarrow the translation of the structural rules is obvious.

An example: from IL (natural deduction)...

$$
\begin{aligned}
& \downarrow_{\text {cut }} \\
& n f(\pi)=\frac{\overline{A \vdash A}^{a x}}{A_{A, b, B, \vdash A}^{B, B \rightarrow C \vdash A}} w
\end{aligned}
$$

An example: from IL (natural deduction)...

$$
\begin{aligned}
& \downarrow_{\text {cut }} \\
& n f(\pi)=\frac{\overline{a: A \vdash a: A}^{a x}}{} w_{a: A, b: B, \vdash a: A}^{a: b: B, x: B \rightarrow C \vdash a: A} w
\end{aligned}
$$

Curry-Howard: $\quad(\lambda c a)(x b) \rightarrow_{\beta} a$

An example: from IL (natural deduction)...

intuit. logic (IL):

An example: . . . to ILL via $(\cdot)^{\mathbb{N}}$

$$
\begin{aligned}
& { }_{\text {cut }} \downarrow_{+}
\end{aligned}
$$

An example: . . . to ILL via $(\cdot)^{\mathbb{N}}$

intuit. logic (IL):

An example: . . . to ILL via $(\cdot)^{\mathbb{N}}$

$$
\begin{aligned}
& \text { cut } \downarrow_{+}
\end{aligned}
$$

Curry-Howard: $\quad(\lambda c a)(x b) \rightarrow_{\beta} a$

An example: ...to ILL via $(\cdot)^{\mathrm{V}}$

$$
\begin{aligned}
& \frac{\overline{!B \vdash!B}^{a x} \overline{!C \vdash!C}^{a x}}{}{ }^{(B,!B \multimap!C \vdash!C}
\end{aligned}
$$

$$
\begin{aligned}
& !A, b!B, \times!(!B \multimap!C) \vdash(\lambda c a)(\times b) A \\
& \text { cut } \downarrow_{+}
\end{aligned}
$$

An example: . . . to ILL via $(\cdot)^{\mathrm{V}}$

intuit. logic (IL):
intuit. $\stackrel{\text { LL }}{\downarrow}{ }^{\vee}$ (ILL):

An example: . . . to ILL via $(\cdot)^{\mathrm{V}}$

$$
\begin{aligned}
& \text { cut } \downarrow_{+}
\end{aligned}
$$

$(\lambda c a)(x b) \rightarrow_{\beta_{v}} a[x b / c]$ (i.e. let $c:=x b$ in $\left.a\right) \approx(\lambda c a)(x b) \ldots$ boring (according to Girard).
But $a[x b / c]$ is β_{v}-normal!

Call-by-name vs. call-by-value from a Linear Logic point of view

In the λ-calculus there are two evaluation mechanisms:

- call-by-name (CbN, β-reduction): no restriction in firing a β-redex;
- call-by-value (CbV, β_{v}-reduction): a β-redex $(\lambda x t) s$ can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates
β-reduction via the translation (.) $\left\{\beta_{v}\right.$-reduction via the translation

- via (.) every argument is translated by a box \rightsquigarrow every argument can be duplicated or discarded (CbN discipline);
- via (.) ${ }^{\mathrm{V}}$ every (and only) abstraction or variable is translated by a box \rightsquigarrow only abstraction or variable can be duplicated or discarded (CbV discipline)

The two Girard's logical translations can explain the two different evaluation mechanisms inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.

In the λ-calculus there are two evaluation mechanisms:

- call-by-name (CbN, β-reduction): no restriction in firing a β-redex;
- call-by-value (CbV, β_{v}-reduction): a β-redex $(\lambda x t) s$ can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates $\left\{\begin{array}{l}\beta \text {-reduction via the translation }(\cdot)^{\mathbb{N}} \\ \beta_{v} \text {-reduction via the translation }(\cdot)^{\mathrm{V}}\end{array}\right.$

- via $(\cdot)^{N}$ every argument is translated by a box \rightsquigarrow every argument can be duplicated or discarded (CbN discipline);
- via (.) $)^{V}$ every (and only) abstraction or variable is translated by a box \rightsquigarrow only abstraction or variable can be duplicated or discarded (CbV discipline).

The two Girard's logical translations can explain the two different evaluation mechanisms inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.

In the λ-calculus there are two evaluation mechanisms:

- call-by-name (CbN, β-reduction): no restriction in firing a β-redex;
- call-by-value (CbV, β_{v}-reduction): a β-redex $(\lambda x t) s$ can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates $\left\{\begin{array}{l}\beta \text {-reduction via the translation }(\cdot)^{\mathbb{N}} \\ \beta_{v} \text {-reduction via the translation }(\cdot)^{\mathrm{V}}\end{array}\right.$

- via $(\cdot)^{\mathbb{N}}$ every argument is translated by a box \rightsquigarrow every argument can be duplicated or discarded (CbN discipline);
- via (•) every (and only) abstraction or variable is translated by a box \rightsquigarrow only abstraction or variable can be duplicated or discarded (CbV discipline).

The two Girard's logical translations can explain the two different evaluation mechanisms inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.

ILL (and proof-nets) syntax is extremely expressive and powerful, but it is too general for the computational purpose of representing purely functional programs.

> Question: Can we internalize the two Girard's translations in a variant of the λ-calculus?
> Yes! There are several examples in the literature, e.g.
> Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John Maraist, Martin Odersky, David Turner, and Philip Wadler. MFPS, 1995.

Idea: Let linear logic guide the study and design of models of computation.

We propose here an alternative solution, the bang calculus: it differs from the linear λ-calculi of Maraist et al. for some technical aspects.

All the "good" results proved for Maraist et al.'s linear λ-calculus hold also for the bang calculus, and in a "better" way.

ILL (and proof-nets) syntax is extremely expressive and powerful, but it is too general for the computational purpose of representing purely functional programs.

Question: Can we internalize the two Girard's translations in a variant of the λ-calculus?
Yes! There are several examples in the literature, e.g.
Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John Maraist, Martin Odersky, David Turner, and Philip Wadler. MFPS, 1995.

Idea: Let linear logic guide the study and design of models of computation.

We propose here an alternative solution, the bang calculus: it differs from the linear λ-calculi of Maraist et al. for some technical aspects.

All the "good" results proved for Maraist et al.'s linear λ-calculus hold also for the bang calculus, and in a "better" way.

ILL (and proof-nets) syntax is extremely expressive and powerful, but it is too general for the computational purpose of representing purely functional programs.

Question: Can we internalize the two Girard's translations in a variant of the λ-calculus?
Yes! There are several examples in the literature, e.g.
Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John Maraist, Martin Odersky, David Turner, and Philip Wadler. MFPS, 1995.

Idea: Let linear logic guide the study and design of models of computation.

We propose here an alternative solution, the bang calculus: it differs from the linear λ-calculi of Maraist et al. for some technical aspects.

All the "good" results proved for Maraist et al.'s linear λ-calculus hold also for the bang calculus, and in a "better" way.

Outline

(1) Introduction: lambda-calculi and a unifying meta-theory
(2) Girard's two translations: from proof theory to computation
(3) The bang calculus: its syntax and semantics
4) Embedding CbN and $\mathrm{CbV} \lambda$-calculi into the bang calculus, syntactically
(5) Embedding CBN and CBV λ-calculi into the bang calculus, semantically
(6) Conclusions
G. Guerrieri

Syntax and reduction rules of the bang calculus

Syntax:
Terms

$$
T, S, R::=x\left|T^{!}\right| \lambda x T|T S| \operatorname{der} T
$$

Reduction rules:

$(\lambda \times T) S^{!} \mapsto_{x} T\{S / X\}$ $\operatorname{der}\left(T^{\mathrm{I}}\right) \mapsto_{\mathrm{d}} T$

For any $r \in\{\lambda, d, b\}$,

- r-reduction \rightarrow_{r} is the closure under any contexts of \rightarrow_{r} (it fires any r-redex);
- ground r -reduction (or r_{g}-reduction) $\rightarrow_{\mathrm{rg}_{\mathrm{g}}}$ does not fire r -redexes under !. Idea: only boxes $T^{!}$are duplicable and discardable (\rightsquigarrow linear logic).
\square

Syntax and reduction rules of the bang calculus

Syntax:
Terms

$$
T, S, R::=x\left|T^{!}\right| \lambda x T|T S| \operatorname{der} T
$$

Reduction rules:

$$
(\lambda \times T) S^{!} \mapsto_{\lambda} T\{S / x\} \quad \operatorname{der}\left(T^{!}\right) \mapsto_{\mathrm{d}} T \quad \mapsto_{\mathrm{b}}:=\mapsto_{\lambda} \cup \mapsto_{\mathrm{d}}
$$

For any $r \in\{\lambda, d, b\}$,

- r-reduction \rightarrow_{r} is the closure under any contexts of \mapsto_{r} (it fires any r-redex);
- ground r -reduction (or rg_{g}-reduction) $\rightarrow_{\mathrm{rg}_{\mathrm{g}}}$ does not fire r -redexes under !.

Idea: only boxes $T^{!}$are duplicable and discardable (\rightsquigarrow linear logic).

Syntax and reduction rules of the bang calculus

Syntax:
Terms

$$
T, S, R::=x\left|T^{!}\right| \lambda x T|T S| \operatorname{der} T
$$

Reduction rules:

$$
(\lambda \times T) S^{!} \mapsto_{\lambda} T\{S / x\} \quad \operatorname{der}\left(T^{!}\right) \mapsto_{\mathrm{d}} T \quad \mapsto_{\mathrm{b}}:=\mapsto_{\lambda} \cup \mapsto_{\mathrm{d}}
$$

For any $r \in\{\lambda, \mathrm{~d}, \mathrm{~b}\}$,

- r-reduction \rightarrow_{r} is the closure under any contexts of \mapsto_{r} (it fires any r-redex);
- ground r -reduction (or r_{g}-reduction) $\rightarrow_{\mathrm{r}_{\mathrm{g}}}$ does not fire r -redexes under !.

Idea: only boxes $T^{!}$are duplicable and discardable (\rightsquigarrow linear logic).

Proposition (confluence; G. \& Ehrhard, 2016)

$\rightarrow_{\mathrm{b}_{\mathrm{g}}}$ is diamond and \rightarrow_{b} is confluent.

The bang calculus and LL proof-nets

The bang calculus gives a nice decomposition of the two Girard's translations $(\cdot)^{\mathbb{N}}$ and $(\cdot)^{\mathbb{V}}$.

Rmk (Ehrhrard, 2016): Bang calculus \approx untyped version of Levy's Call-by-Push-Value:

- (.) ${ }^{!}$₹ thunk
- der \approx force

The bang calculus and LL proof-nets

The bang calculus gives a nice decomposition of the two Girard's translations $(\cdot)^{\mathbb{N}}$ and $(\cdot)^{\mathbb{V}}$.

Reduction \rightarrow_{b} corresponds to the cut-elimination in LL proof-nets. Reduction $\rightarrow_{\mathrm{b}_{\mathbf{g}}}$ corresponds to the cut-elimination at depth 0 in LL proof-nets.

Rmk (Ehrhrard, 2016): Bang calculus \approx untyped version of Levy's Call-by-Push-Value:

- $(\cdot)^{!} \approx$ thunk
- der \approx force

The bang calculus and LL proof-nets

The bang calculus gives a nice decomposition of the two Girard's translations $(\cdot)^{\mathbb{N}}$ and $(\cdot)^{\mathbb{V}}$.

Reduction \rightarrow_{b} corresponds to the cut-elimination in LL proof-nets.
Reduction $\rightarrow_{\mathrm{b}_{\mathbf{g}}}$ corresponds to the cut-elimination at depth 0 in LL proof-nets.
Rmk (Ehrhrard, 2016): Bang calculus \approx untyped version of Levy's Call-by-Push-Value:

- $(\cdot)^{!} \approx$ thunk
- der \approx force

Denotational models for LL

A denotational model for $L L$ is given by:
(1) a symmetric monoidal closed category $(\mathcal{L}, \otimes, 1, \lambda, \rho, \alpha, \sigma)$; we use $X \multimap Y$ for the object of linear morphisms from X to Y;
© \mathcal{L} is cartesian with terminal object T and product \&; \mathcal{L} is cocartesian with initial object 0 and coproduct \oplus;
© a comonad !_: $\mathcal{L} \rightarrow \mathcal{L}$ with counit $\operatorname{der}_{X} \in \mathcal{L}(!X, X)$ (dereliction) and comultiplication $\operatorname{dig}_{X} \in \mathcal{L}(!X,!!X)$ (digging);

- ...

Specific assumption: the unique morphism in $\mathcal{L}(0, T)$ is an iso; to simplify, $0=T$ (this assumption is fulfilled by many models of LL: relational, coherent, Scott, etc.)

Denotational models for LL

A denotational model for $L L$ is given by:
(1) a symmetric monoidal closed category $(\mathcal{L}, \otimes, 1, \lambda, \rho, \alpha, \sigma)$; we use $X \multimap Y$ for the object of linear morphisms from X to Y;
(2) \mathcal{L} is cartesian with terminal object T and product \&; \mathcal{L} is cocartesian with initial object 0 and coproduct \oplus;
© a comonad !_: $\mathcal{L} \rightarrow \mathcal{L}$ with counit $\operatorname{der}_{x} \in \mathcal{L}(!X, X)$ (dereliction) and comultiplication $\operatorname{dig}_{X} \in \mathcal{L}(!X,!!X)$ (digging);
© ...

Specific assumption: the unique morphism in $\mathcal{L}(0, \top)$ is an iso; to simplify, $0=T$. (this assumption is fulfilled by many models of LL: relational, coherent, Scott, etc.)

Denotational models for the bang calculus built from LL

To have a model of the-untyped-bang calculus, take a retraction: an object \mathcal{U} such that

$$
!\mathcal{U} \&(!\mathcal{U} \multimap \mathcal{U}) \triangleleft \mathcal{U}
$$

Rmk (retractions): It follows that ! $\mathcal{U} \triangleleft \mathcal{U}$ and
(1) ! U $\multimap \mathcal{U} \triangleleft \mathcal{U}$ (semantic CbN version of $o \rightarrow o=o$);
© $!\mathcal{U} \rightarrow!\mathcal{U} \triangleleft \mathcal{U}$ (semantic CbV version of $o \rightarrow o=o$).

Denotational models for the bang calculus built from LL

To have a model of the-untyped-bang calculus, take a retraction: an object \mathcal{U} such that

$$
!\mathcal{U} \&(!\mathcal{U} \multimap \mathcal{U}) \triangleleft \mathcal{U}
$$

Rmk (retractions): It follows that $!\mathcal{U} \triangleleft \mathcal{U}$ and
(1) ! $\mathcal{U} \multimap \mathcal{U} \triangleleft \mathcal{U}$ (semantic CbN version of $o \rightarrow o=o$);
(2) $\mathfrak{U} \multimap!\mathcal{U} \triangleleft \mathcal{U}$ (semantic CbV version of $o \rightarrow 0=0$).

A term T with $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \supseteq \mathrm{fv}(T)$ is interpreted by a morphism $\llbracket T \rrbracket_{\vec{x}}:(!\mathcal{U})^{\otimes n} \rightarrow \mathcal{U}$. The (omitted) definition is by induction on T, using the morphisms in \mathcal{L} sketched before.

Theorem (invariance under reduction; G. \& Ehrhard 2016)
Let $T, S \in!\wedge$ and $\mathrm{fv}(T) \subseteq \vec{x}$. If $T \rightarrow_{\mathrm{b}} S$ then $\llbracket T \rrbracket_{\vec{x}}=\llbracket S \rrbracket_{\vec{x}}$.

Outline

(1) Introduction: lambda-calculi and a unifying meta-theory
(2) Girard's two translations: from proof theory to computation
(3) The bang calculus: its syntax and semantics
(4) Embedding CbN and $\mathrm{CbV} \lambda$-calculi into the bang calculus, syntactically
(5) Embedding CBN and CBV λ-calculi into the bang calculus, semantically
(6) Conclusions

Embedding CbN and $\mathrm{CbV} \lambda$-calculi into the bang calculus

We can internalize the two Girard's translations into the bang calculus:

$$
\begin{array}{rlrl}
\text { CbN translation }(\cdot)^{\mathrm{n}}: \Lambda \rightarrow!\Lambda & \text { CbV } & \text { translation }(\cdot \\
x^{\mathrm{n}} & =x & x^{\mathrm{v}} & =x^{!} \\
(\lambda x t)^{\mathrm{n}} & =\lambda x t^{\mathrm{n}} & (\lambda x t)^{\mathrm{v}} & =\left(\lambda x t^{\mathrm{v}}\right)^{!} \\
(t s)^{\mathrm{n}} & =t^{\mathrm{n}}\left(s^{\mathrm{n}}\right)^{!} & (t s)^{\mathrm{v}} & =\left(\operatorname{der} t^{\mathrm{v}}\right) s^{\mathrm{v}}
\end{array}
$$

CbV translation $(\cdot)^{\mathrm{V}}: \Lambda \rightarrow!\Lambda$

The difference between $(\cdot)^{\mathrm{n}}$ and $(\cdot)^{\mathrm{v}}$ is only where $(\cdot)^{!}$and der are placed.
Idea: in CbN any argument is duplicable and discardable, in CbV only λ 's and variables.

Let t and s be λ-terms.
(c) One has that $t^{\mathrm{n}}\left\{s^{\mathrm{n}} / \mathrm{x}\right\}=(t\{s / x\})^{\mathrm{n}}$

Embedding CbN and $\mathrm{CbV} \lambda$-calculi into the bang calculus

We can internalize the two Girard's translations into the bang calculus:
CbN translation $(\cdot)^{\mathrm{n}}: \Lambda \rightarrow!\Lambda$

$$
\mathrm{CbV} \text { translation }(\cdot)^{\mathrm{v}}: \Lambda \rightarrow!\Lambda
$$

$$
x^{\mathrm{n}}=x
$$

$$
(\lambda x t)^{\mathrm{n}}=\lambda x t^{\mathrm{n}}
$$

$$
(t s)^{\mathrm{n}}=t^{\mathrm{n}}\left(s^{\mathrm{n}}\right)^{!}
$$

$$
\begin{aligned}
x^{v} & =x^{!} \\
(\lambda x t)^{v} & =\left(\lambda x t^{v}\right)^{!} \\
(t s)^{v} & =\left(\operatorname{der} t^{v}\right) s^{v}
\end{aligned}
$$

The difference between $(\cdot)^{\mathrm{n}}$ and $(\cdot)^{\mathrm{v}}$ is only where $(\cdot)^{!}$and der are placed.
Idea: in CbN any argument is duplicable and discardable, in CbV only λ 's and variables.

Lemma (translations commute with substitution)

Let t and s be λ-terms.
(1) One has that $t^{n}\left\{s^{n} / x\right\}=(t\{s / x\})^{n}$.
(2) If s is such that $s^{v}=R^{!}$for some $R \in!\Lambda$, then $t^{v}\{R / x\}=(t\{s / x\})^{v}$.

The bang calculus is a conservative extension of CbN and $\mathrm{CbV} \lambda$-cacluli

Theorem (Sound and complete simulations; G. \& Manzonetto, 2018)
Let t be a λ-term.
(1) Conservative extension of CbN λ-calculus:

Soundness: If $t \rightarrow_{\beta} t^{\prime}$ then $t^{\mathrm{n}} \rightarrow_{\lambda} t^{\prime \mathrm{n}}$ (and $t^{\mathrm{n}} \rightarrow_{\mathrm{b}} t^{\prime \mathrm{n}}$); Completeness: If $t^{\mathrm{n}} \rightarrow_{\mathrm{b}} S$ then $t^{\mathrm{n}} \rightarrow_{\lambda} S=t^{\prime \mathrm{n}}$ and $t \rightarrow_{\beta} t^{\prime}$ for some λ-term t^{\prime}.
(3) Conservative extension of CbV λ-calculus: Soundness: If $t \rightarrow_{\beta^{v}} t^{\prime}$ then $t^{v} \rightarrow_{\mathrm{d}} \rightarrow_{\lambda} t^{\prime v}$ (and hence $t^{v} \rightarrow_{\mathrm{b}} \rightarrow_{\mathrm{b}} t^{\prime v}$); Completeness: If $t^{v} \rightarrow_{\mathrm{d}} \rightarrow_{\lambda} S$ then $S=t^{\prime v}$ and $t \rightarrow_{\beta^{v}} t^{\prime}$ for some λ-term t^{\prime}

[^0]The bang calculus is a conservative extension of CbN and $\mathrm{CbV} \lambda$-cacluli

Theorem (Sound and complete simulations; G. \& Manzonetto, 2018)
Let t be a λ-term.
(1) Conservative extension of CbN λ-calculus:

Soundness: If $t \rightarrow_{\beta} t^{\prime}$ then $t^{\mathrm{n}} \rightarrow_{\lambda} t^{\prime \mathrm{n}}$ (and $t^{\mathrm{n}} \rightarrow_{\mathrm{b}} t^{\mathrm{n}}$);
Completeness: If $t^{\mathrm{n}} \rightarrow_{\mathrm{b}} S$ then $t^{\mathrm{n}} \rightarrow_{\lambda} S=t^{\prime \mathrm{n}}$ and $t \rightarrow_{\beta} t^{\prime}$ for some λ-term t^{\prime}.
(2) Conservative extension of CbV λ-calculus:

Soundness: If $t \rightarrow_{\beta^{v}} t^{\prime}$ then $t^{v} \rightarrow_{\mathrm{d}} \rightarrow_{\lambda} t^{\prime v}$ (and hence $t^{v} \rightarrow_{\mathrm{b}} \rightarrow_{\mathrm{b}} t^{\prime v}$);
Completeness: If $t^{v} \rightarrow_{\mathrm{d}} \rightarrow_{\lambda} S$ then $S=t^{\prime v}$ and $t \rightarrow_{\beta^{v}} t^{\prime}$ for some λ-term t^{\prime}.

These simulations are:
o modular: the ground $\operatorname{CbX} \lambda$-calculus is simulated in the ground bang calculus (ground $\mathrm{CbN}=$ head reduction, ground $\mathrm{CbV}=$ weak reduction);

- quantitative sensitive: one β-step is simulated by one λ-step, and conversely.

In other linear λ-calculi, completeness of CBV translation fails!
A step in the CbV fragment of those calculi need not correspond to a β^{v}-step.

The bang calculus is a conservative extension of CbN and $\mathrm{CbV} \lambda$-cacluli

Theorem (Sound and complete simulations; G. \& Manzonetto, 2018)

Let t be a λ-term.
(1) Conservative extension of CbN λ-calculus:

Soundness: If $t \rightarrow_{\beta} t^{\prime}$ then $t^{\mathrm{n}} \rightarrow_{\lambda} t^{\prime \mathrm{n}}$ (and $t^{\mathrm{n}} \rightarrow_{\mathrm{b}} t^{\mathrm{n}}$);
Completeness: If $t^{\mathrm{n}} \rightarrow_{\mathrm{b}} S$ then $t^{\mathrm{n}} \rightarrow_{\lambda} S=t^{\prime \mathrm{n}}$ and $t \rightarrow_{\beta} t^{\prime}$ for some λ-term t^{\prime}.
(2) Conservative extension of CbV λ-calculus:

Soundness: If $t \rightarrow_{\beta^{v}} t^{\prime}$ then $t^{v} \rightarrow_{\mathrm{d}} \rightarrow_{\lambda} t^{\prime v}$ (and hence $t^{v} \rightarrow_{\mathrm{b}} \rightarrow_{\mathrm{b}} t^{\prime v}$); Completeness: If $t^{v} \rightarrow_{\mathrm{d}} \rightarrow_{\lambda} S$ then $S=t^{\prime v}$ and $t \rightarrow_{\beta^{v}} t^{\prime}$ for some λ-term t^{\prime}.

These simulations are:

- modular: the ground $\operatorname{Cb} X \lambda$-calculus is simulated in the ground bang calculus (ground $\mathrm{CbN}=$ head reduction, ground $\mathrm{CbV}=$ weak reduction);
- quantitative sensitive: one β-step is simulated by one λ-step, and conversely.

In other linear λ-calculi, completeness of CBV translation fails!
A step in the CbV fragment of those calculi need not correspond to a β^{v}-step

The bang calculus is a conservative extension of CbN and $\mathrm{CbV} \lambda$-cacluli

Theorem (Sound and complete simulations; G. \& Manzonetto, 2018)

Let t be a λ-term.
(1) Conservative extension of CbN λ-calculus:

Soundness: If $t \rightarrow_{\beta} t^{\prime}$ then $t^{\mathrm{n}} \rightarrow_{\lambda} t^{\prime \mathrm{n}}$ (and $t^{\mathrm{n}} \rightarrow_{\mathrm{b}} t^{\mathrm{n}}$);
Completeness: If $t^{\mathrm{n}} \rightarrow_{\mathrm{b}} S$ then $t^{\mathrm{n}} \rightarrow_{\lambda} S=t^{\prime \mathrm{n}}$ and $t \rightarrow_{\beta} t^{\prime}$ for some λ-term t^{\prime}.
(2) Conservative extension of CbV λ-calculus:

Soundness: If $t \rightarrow_{\beta^{v}} t^{\prime}$ then $t^{v} \rightarrow_{\mathrm{d}} \rightarrow_{\lambda} t^{\prime v}$ (and hence $t^{v} \rightarrow_{\mathrm{b}} \rightarrow_{\mathrm{b}} t^{\prime v}$); Completeness: If $t^{v} \rightarrow_{\mathrm{d}} \rightarrow_{\lambda} S$ then $S=t^{\prime v}$ and $t \rightarrow_{\beta^{v}} t^{\prime}$ for some λ-term t^{\prime}.

These simulations are:

- modular: the ground $\operatorname{Cb} X \lambda$-calculus is simulated in the ground bang calculus (ground $\mathrm{CbN}=$ head reduction, ground $\mathrm{CbV}=$ weak reduction);
- quantitative sensitive: one β-step is simulated by one λ-step, and conversely.

In other linear λ-calculi, completeness of CBV translation fails!
\rightsquigarrow A step in the CbV fragment of those calculi need not correspond to a β^{\vee}-step.

The target of the CbN translation in the bang calculus

$$
\text { target of } C b N \text { translation into ! } \Lambda: \quad T, S::=x\left|T S^{!}\right| \lambda x T \quad \text { (set: }!\Lambda^{n} \text {) }
$$

Rmk: $t^{\mathrm{n}} \in!\Lambda^{\mathrm{n}}$ for any $t \in \Lambda$, and conversely, for any $T \in!\Lambda^{\mathrm{n}}, T^{\mathrm{n}}=t$ for some $t \in \Lambda$.
Rmk: In ! Λ^{n}, the construct der never occurs \rightsquigarrow in ! Λ^{n}, hence $\rightarrow_{\lambda}=\rightarrow_{\mathrm{b}}$.
\leadsto The $\mathrm{CbN} \lambda$-calculus is isomorphic to the fragment $!\Lambda^{n}$ of the bang calculus.

(3) (CbN equational theory) Let $t, s \in \Lambda: t \simeq_{\beta} s$ iff $t^{\mathrm{n}} \simeq_{\mathrm{b}} s^{\mathrm{n}}$

The target of the CbN translation in the bang calculus

$$
\text { target of } C b N \text { translation into ! } \Lambda: \quad T, S::=x\left|T S^{!}\right| \lambda x T \quad \text { (set: }!\Lambda^{n} \text {) }
$$

Rmk: $t^{\mathrm{n}} \in!\Lambda^{\mathrm{n}}$ for any $t \in \Lambda$, and conversely, for any $T \in!\Lambda^{\mathrm{n}}, T^{\mathrm{n}}=t$ for some $t \in \Lambda$.
Rmk: In ! Λ^{n}, the construct der never occurs \rightsquigarrow in ! Λ^{n}, hence $\rightarrow_{\lambda}=\rightarrow_{\mathrm{b}}$.
\rightsquigarrow The $\mathrm{CbN} \lambda$-calculus is isomorphic to the fragment $!\Lambda^{n}$ of the bang calculus.

(1) (CbN equational theory) Let $t, s \in \Lambda: t \simeq_{\beta} s$ iff $t^{n} \simeq_{b} s^{n}$

The target of the CbN translation in the bang calculus

$$
\text { target of CbN translation into }!\wedge: \quad T, S::=x\left|T S^{!}\right| \lambda x T \quad\left(\text { set: }!\Lambda^{n}\right)
$$

Rmk: $t^{\mathrm{n}} \in!\Lambda^{\mathrm{n}}$ for any $t \in \Lambda$, and conversely, for any $T \in!\Lambda^{\mathrm{n}}, T^{\mathrm{n}}=t$ for some $t \in \Lambda$.
Rmk: In ! Λ^{n}, the construct der never occurs \rightsquigarrow in ! Λ^{n}, hence $\rightarrow_{\lambda}=\rightarrow_{\mathrm{b}}$.
\rightsquigarrow The $\mathrm{CbN} \lambda$-calculus is isomorphic to the fragment ! \wedge^{n} of the bang calculus.

Corollary (Preservations with respect to CbN λ-calculus; G. \& Manzonetto, 2018)

(1) (CbN equational theory) Let $t, s \in \Lambda: t \simeq_{\beta} s$ iff $t^{\mathrm{n}} \simeq_{\mathrm{b}} s^{\mathrm{n}}$.
(c) (CbN normal forms) Let $t \in \Lambda$: t is β-normal iff t^{n} is b-normal.

The target of the CbV translation in the bang calculus

$$
\begin{aligned}
\text { target of } C b \vee \text { translation into ! } \Lambda: & M, N::=U^{!}|\operatorname{der} M N| U M & & \text { (set: } \left.!\Lambda^{v}\right) \\
U:: & =x \mid \lambda \times M & & \text { (set: } \left.!\Lambda_{v}^{v}\right) .
\end{aligned}
$$

Rmk: For any $t \in \Lambda, t^{v} \in!\Lambda^{v}$; in particular, for any $v \in \Lambda_{v}, v^{v}=U^{!}$for some $U \in!\Lambda_{v}^{v}$.
The converse fails: $(\lambda x x x)^{v}=\Delta^{\prime} \rightarrow_{\mathrm{d}} \Delta$, where Δ is b-normal and $\nexists \lambda$-term $t: t^{v}=\Delta$. Note that $\lambda x x x$ is β^{v}-normal but $(\lambda x x x)^{v}=\Delta^{\prime}$ is not b -normal.

The target of the CbV translation in the bang calculus

$$
\begin{aligned}
\text { target of } C b \vee \text { translation into ! } \wedge: & M, N::=U^{\prime}|\operatorname{der} M N| U M & \text { (set: }!\Lambda^{v} \text {) } \\
U::=x \mid \lambda \times M & & \text { (set: } \left.!\Lambda_{v}^{v}\right) .
\end{aligned}
$$

Rmk: For any $t \in \Lambda, t^{v} \in!\Lambda^{v}$; in particular, for any $v \in \Lambda_{v}, v^{v}=U^{!}$for some $U \in!\Lambda_{v}^{v}$.
The converse fails: $(\lambda x x x)^{v}=\Delta^{\prime} \rightarrow_{\mathrm{d}} \Delta$, where Δ is b-normal and $\nexists \lambda$-term $t: t^{v}=\Delta$. Note that $\lambda x x x$ is β^{ν}-normal but $(\lambda x x x)^{v}=\Delta^{\prime}$ is not b -normal.
\rightsquigarrow The CbV λ-calculus is "morally" isomorphic to the fragment Λ^{v} of the bang calculus.

The target of the CbV translation in the bang calculus

$$
\begin{array}{rll}
\text { target of CbV translation into ! } \Lambda: & M, N::=U^{\prime}|\operatorname{der} M N| U M & \text { (set: }!\Lambda^{v} \text {) } \\
U::=x \mid \lambda \times M & \text { (set: ! } \Lambda_{v}^{v} \text {). }
\end{array}
$$

Rmk: For any $t \in \Lambda, t^{v} \in!\Lambda^{v}$; in particular, for any $v \in \Lambda_{v}, v^{v}=U^{!}$for some $U \in!\Lambda_{v}^{v}$.
The converse fails: $(\lambda x x x)^{v}=\Delta^{\prime} \rightarrow_{\mathrm{d}} \Delta$, where Δ is b-normal and $\nexists \lambda$-term $t: t^{v}=\Delta$. Note that $\lambda x x x$ is β^{v}-normal but $(\lambda x x x)^{v}=\Delta^{\prime}$ is not b -normal.
\rightsquigarrow The CbV λ-calculus is "morally" isomorphic to the fragment $!\Lambda^{v}$ of the bang calculus.

Corollary (Preservations with respect to CbV λ-calculus; G \& Manzonetto, 2018)
(1) (CbV equational theory) Let $t, s \in \Lambda: t \simeq_{\beta^{v}} s$ iff $t^{v} \simeq_{b} s^{v}$.

This is false in other linear λ-calculi!

Outline

(1) Introduction: lambda-calculi and a unifying meta-theory
(2) Girard's two translations: from proof theory to computation
(3) The bang calculus: its syntax and semantics
4) Embedding CbN and $\mathrm{CbV} \lambda$-calculi into the bang calculus, syntactically
(5) Embedding CBN and CBV λ-calculi into the bang calculus, semantically
(6) Conclusions

Factorization of the semantics of CBN λ-calculus (G. \& Manzonetto, 2018)

Retraction $!\mathcal{U} \multimap \mathcal{U} \triangleleft \mathcal{U}$ in \mathcal{L} lifts to a retraction ! $\mathcal{U} \multimap \mathcal{U} \triangleleft \mathcal{U}$ in \mathcal{L}^{\prime} (co-Kleisli of \mathcal{L} via !) \rightsquigarrow any denotational model \mathcal{U} of the bang calculus is a denotat. model of $\mathrm{CbN} \lambda$-calculus.
$[t]_{\bar{x}}^{n}=$ usual CbN interpretation of a λ-term t in \mathcal{U}.
$\llbracket t^{\mathrm{n}} \rrbracket_{\vec{x}}=$ bang interpretation of the CbN translation of a λ-term t in \mathcal{U}.
Question: For a λ-term t, what is the relationship between $[t]^{n}$ and $\llbracket t^{n} \rrbracket$?

Factorization of the semantics of CBN λ-calculus (G. \& Manzonetto, 2018)

Retraction ! $\mathcal{U} \multimap \mathcal{U} \triangleleft \mathcal{U}$ in \mathcal{L} lifts to a retraction $\mathfrak{U} \multimap \mathcal{U} \triangleleft \mathcal{U}$ in \mathcal{L}^{\prime} (co-Kleisli of \mathcal{L} via !) \rightsquigarrow any denotational model \mathcal{U} of the bang calculus is a denotat. model of $\mathrm{CbN} \lambda$-calculus.

$$
[t]_{\bar{x}}^{n}=\text { usual } \mathrm{CbN} \text { interpretation of a } \lambda \text {-term } t \text { in } \mathcal{U} .
$$

$\llbracket t^{\mathrm{n}} \rrbracket_{\vec{x}}=$ bang interpretation of the CbN translation of a λ-term t in \mathcal{U}.

Question: For a λ-term t, what is the relationship between $[t]^{n}$ and $\llbracket t^{\mathrm{n}} \rrbracket$?

Theorem (Factorization of any denotational semantics of CBN λ-calculus)

For every λ-term $t,[t]_{\vec{x}}^{n}=\llbracket t^{n} \rrbracket_{\vec{x}}$ (up to Seely's isos).

$$
\Lambda \ni t \longrightarrow[t]_{(\cdot)^{\mathrm{n}}}^{\searrow}=\llbracket t^{\mathrm{n}} \rrbracket \in \mathcal{U}
$$

Factorization of the semantics of CbV λ-calculus? (G. \& Manzonetto, 2018)

The functor! is a strong monad on the Kleisli category $\mathcal{L}!\rightsquigarrow$ retraction ! $\mathcal{U} \multimap!\cup \mathcal{U} \triangleleft \mathcal{U}$ \rightsquigarrow any denotational model \mathcal{U} of the bang calculus is a denotat. model of $\mathrm{CbV} \lambda$-calculus.

$$
\begin{aligned}
{[t]_{\bar{x}}^{v} } & =\text { usual CbV interpretation of a } \lambda \text {-term } t \text { in } \mathcal{U} . \\
\llbracket t^{v} \rrbracket_{\bar{x}} & =\text { bang interpretation of the CbV translation of a } \lambda \text {-term } t \text { in } \mathcal{U} .
\end{aligned}
$$

Question: For a λ-term t, what is the relationship between $[t]^{v}$ and $\llbracket t^{v} \rrbracket$?
\square In the relational semantics, there is a λ-term t such that $[t]_{\bar{x}}^{\sim} \subsetneq$

[^1] more sophisticated than in CbN. Maybe we should use logical relations between the two.

Factorization of the semantics of CbV λ-calculus? (G. \& Manzonetto, 2018)

The functor! is a strong monad on the Kleisli category $\mathcal{L}!\rightsquigarrow$ retraction ! $\mathcal{U} \multimap!\mathbb{U} \triangleleft \mathcal{U}$
\rightsquigarrow any denotational model \mathcal{U} of the bang calculus is a denotat. model of $\mathrm{CbV} \lambda$-calculus.

$$
\begin{aligned}
{[t]_{\vec{x}}^{v} } & =\text { usual CbV interpretation of a } \lambda \text {-term } t \text { in } \mathcal{U} . \\
\llbracket t^{v} \rrbracket_{\vec{x}} & =\text { bang interpretation of the } \mathrm{CbV} \text { translation of a } \lambda \text {-term } t \text { in } \mathcal{U} .
\end{aligned}
$$

Question: For a λ-term t, what is the relationship between $[t]^{v}$ and $\llbracket t^{v} \rrbracket$?

Theorem (Non-factorization of some denotational semantics of $\mathrm{CbV} \lambda$-calculus)

In the relational semantics, there is a λ-term t such that $[t]_{\dot{x}}^{v} \subsetneq \llbracket t^{\nu} \rrbracket_{\bar{x}}$.

Conjecture: There still exists a relationship in CbV between $[t]^{\vee}$ and $\llbracket t^{v} \rrbracket$, but it should be more sophisticated than in CbN. Maybe we should use logical relations between the two.

Outline

(1) Introduction: lambda-calculi and a unifying meta-theory
(2) Girard's two translations: from proof theory to computation
(3) The bang calculus: its syntax and semantics

4 Embedding CbN and $\mathrm{CbV} \lambda$-calculi into the bang calculus, syntactically
(5) Embedding CBN and CBV λ-calculi into the bang calculus, semantically
(6) Conclusions

Conclusions (and motivations)

(1) The existence of two separate paradigms (CbN and $\mathrm{CbV} \lambda$-calculi) is troubling:

- it makes each language appear arbitrary (a unified language might be more canonical);
- each time we create a new style of semantics (e.g. operational semantics, continuation semantics, Scott semantics, game semantics, etc.) we always need to do it twice.
(2) The bang calculus is a general setting to compare CbN and $\mathrm{CbV} \lambda$-calculi in the
same rewriting system and with the same denotational semantics.

Conclusions (and motivations)

(1) The existence of two separate paradigms (CbN and $\mathrm{CbV} \lambda$-calculi) is troubling:

- it makes each language appear arbitrary (a unified language might be more canonical);
- each time we create a new style of semantics (e.g. operational semantics, continuation semantics, Scott semantics, game semantics, etc.) we always need to do it twice.
(2) The bang calculus is a general setting to compare CbN and $\mathrm{CbV} \lambda$-calculi in the same rewriting system and with the same denotational semantics.
- CbN λ-calculus has a rich and refined theory featuring advanced concepts such as separability, solvability, Böhm trees, classification of λ-theories, full-abstraction, etc.
- This is not the case for CbV λ-calculus: in the CbV counterpart of these theoretical notions there are only partial and not satisfactory results (or do not exist at all!).
These theoretical notions and results well studied for the $\mathrm{CbN} \lambda$-calculus might be
adapted and studied in the more general setting of the bang calculus \rightsquigarrow compelling
point of view to analyze the corresponding notions for $\mathrm{CbV} \lambda$-calculus.

Conclusions (and motivations)

(1) The existence of two separate paradigms (CbN and $\mathrm{CbV} \lambda$-calculi) is troubling:

- it makes each language appear arbitrary (a unified language might be more canonical);
- each time we create a new style of semantics (e.g. operational semantics, continuation semantics, Scott semantics, game semantics, etc.) we always need to do it twice.
(2) The bang calculus is a general setting to compare CbN and $\mathrm{CbV} \lambda$-calculi in the same rewriting system and with the same denotational semantics.
- CbN λ-calculus has a rich and refined theory featuring advanced concepts such as separability, solvability, Böhm trees, classification of λ-theories, full-abstraction, etc.
- This is not the case for CbV λ-calculus: in the CbV counterpart of these theoretical notions there are only partial and not satisfactory results (or do not exist at all!).
- These theoretical notions and results well studied for the CbN λ-calculus might be adapted and studied in the more general setting of the bang calculus \rightsquigarrow compelling point of view to analyze the corresponding notions for $\mathrm{CbV} \lambda$-calculus.

Some results obtained so far

(1) Factorization theorem proved once and for all in the bang calculus:

$$
T \rightarrow_{\mathrm{b}}^{*} S \Longrightarrow T \rightarrow_{\mathrm{b}_{\mathrm{g}}}^{*} \rightarrow \rightarrow_{\mathrm{b}_{\mathrm{g}}}^{*} S
$$

\leadsto By translation in CbN and $\mathrm{CbV} \lambda$-calculi:

$$
t \rightarrow_{\beta}^{*} s \Longrightarrow t \rightarrow_{\beta_{\mathbf{g}}}^{*} \rightarrow_{\neg \beta_{\mathbf{g}}}^{*} s \quad t \rightarrow_{\beta^{\vee}}^{*} s \Longrightarrow t \rightarrow_{\beta_{\mathbf{g}}}^{*} \rightarrow_{\neg \beta_{\mathbf{g}}^{\vee}}^{*} s
$$

(Faggian, G., FoSSaCS 2021)
(3) Normalization theorem proved once and for all in the bang calculus:

$$
T \rightarrow{ }_{\mathrm{b}}^{*} S \text { with } S \text { normal } \Longrightarrow T \rightarrow_{\ell \ell}^{*} S
$$

\rightsquigarrow By translation in the CbN and $\mathrm{CbV} \lambda$-calculi:
$t \rightarrow{ }_{\beta}^{*} s$ with s normal $\Longrightarrow t \rightarrow{ }_{\ell \ell}^{*} s \quad t \rightarrow{ }_{\beta}^{*} s$ with s normal $\Longrightarrow t \rightarrow{ }_{\ell \ell}^{*} s$
(Faggian, G., FoSSaCS 2021)

Some results obtained so far

- Characterization of ground normalization proved once and for all in bang calculus:

$$
\llbracket T \rrbracket_{\vec{x}} \text { is non-trivial } \Longleftrightarrow T \text { is } \mathrm{b}_{\mathrm{g}} \text {-normalizable }
$$

\rightsquigarrow By translation in CbN and $\mathrm{CbV} \lambda$-calculi:

$$
\begin{aligned}
& {[t]_{x}^{n} \text { is non-trivial } \Longleftrightarrow t \text { is } \beta_{\mathrm{g}} \text {-normalizable }} \\
& {[t]_{\bar{x}}^{v} \text { is non-trivial } \Longleftrightarrow t \text { is } \beta_{\mathrm{g}}^{v} \text {-normalizable }}
\end{aligned}
$$

(Bucciarelli, Kesner, Rios, Viso, FLOPS 2020)

- Denotational semantics of the bang calculus via intersection distributors. \rightsquigarrow bi-categorical setting for a proof-relevant semantics.

(G., Olimpieri, CSL 2021)

Some results obtained so far

- Characterization of ground normalization proved once and for all in bang calculus:

$$
\llbracket T \rrbracket_{\vec{x}} \text { is non-trivial } \Longleftrightarrow T \text { is } \mathrm{b}_{\mathrm{g}} \text {-normalizable }
$$

\rightsquigarrow By translation in CbN and $\mathrm{CbV} \lambda$-calculi:

$$
\begin{aligned}
& {[t]_{\bar{x}}^{n} \text { is non-trivial } \Longleftrightarrow t \text { is } \beta_{\mathrm{g}} \text {-normalizable }} \\
& {[t]_{\bar{x}}^{v} \text { is non-trivial } \Longleftrightarrow t \text { is } \beta_{\mathrm{g}}^{v} \text {-normalizable }}
\end{aligned}
$$

(Bucciarelli, Kesner, Rios, Viso, FLOPS 2020)
(9) Denotational semantics of the bang calculus via intersection distributors.
\rightsquigarrow bi-categorical setting for a proof-relevant semantics.

$$
\llbracket T \rrbracket_{\vec{x}}=\left\{\begin{array}{l|c}
\tilde{\pi} & \begin{array}{c}
\vdots \pi \\
\Gamma \vdash T: a
\end{array}
\end{array}\right\}
$$

(G., Olimpieri, CSL 2021)

In non-idempotent intersection type systems for λ-calculi, typability is undecidable.
Question: Is the inabitation problem decidable in the bang calculus?
Given an typing context Γ and a multi type M, is there a term t such that

$$
\ulcorner\vdash t: M \text { is derivable? }
$$

Question bis: Same question, but in the CbN and CbV λ-calculi.
Answer [ArrKesGue23]: Yes, it is decidable an we can find all the inhabitants! And if we restrict the search space of our algorithm to:

- the CbN fragment of the bang calculus \rightsquigarrow we decide inhabitation in CbN ;
- the CbV fragment of the bang calculus \rightsquigarrow we decide inhabitation in CbV.

In non-idempotent intersection type systems for λ-calculi, typability is undecidable.
Question: Is the inabitation problem decidable in the bang calculus?
Given an typing context Γ and a multi type M, is there a term t such that

$$
\ulcorner\vdash t: M \text { is derivable? }
$$

Question bis: Same question, but in the CbN and $\mathrm{CbV} \lambda$-calculi.
Answer [ArrKesGue23]: Yes, it is decidable an we can find all the inhabitants! And if we restrict the search space of our algorithm to:

- the CbN fragment of the bang calculus \rightsquigarrow we decide inhabitation in CbN;
- the CbV fragment of the bang calculus \rightsquigarrow we decide inhabitation in CbV.

Some results obtained so far

In non-idempotent intersection type systems for λ-calculi, typability is undecidable.
Question: Is the inabitation problem decidable in the bang calculus?
Given an typing context Γ and a multi type M, is there a term t such that

$$
\ulcorner\vdash t: M \text { is derivable? }
$$

Question bis: Same question, but in the CbN and CbV λ-calculi.
Answer [ArrKesGue23]: Yes, it is decidable an we can find all the inhabitants! And if we restrict the search space of our algorithm to:

- the CbN fragment of the bang calculus \rightsquigarrow we decide inhabitation in CbN ;
- the CbV fragment of the bang calculus \rightsquigarrow we decide inhabitation in CbV.

The big open question

Call-by-Need is another evaluation mechanism (e.g., used by Haskell):

- as smart as CbV for duplication,
- as smart as CbN for erasure.

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need?
Question bis: Is there a general framework subsuming $\mathrm{CbV}, \mathrm{CbN}$ and CbNeed ?

Idea: We should split the! comonad into two:

- one for duplication:
- one for erasure.

The big open question

Call-by-Need is another evaluation mechanism (e.g., used by Haskell):

- as smart as CbV for duplication,
- as smart as CbN for erasure.

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need?

Question bis: Is there a general framework subsuming $\mathrm{CbV}, \mathrm{CbN}$ and CbNeed ?
Idea: We should split the! comonad into two:

- one for duplication:
- one for erasure.

Call-by-Need is another evaluation mechanism (e.g., used by Haskell):

- as smart as CbV for duplication,
- as smart as CbN for erasure.

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need?

Question bis: Is there a general framework subsuming $\mathrm{CbV}, \mathrm{CbN}$ and CbNeed ?
Idea: We should split the! comonad into two:

- one for duplication;
- one for erasure.

Thank you!

Questions?

[^0]: These simulations are:

 - modular: the ground $\mathrm{Cb} X \lambda$-calculus is simulated in the ground bang calculus (ground $\mathrm{CbN}=$ head reduction, ground $\mathrm{CbV}=$ weak reduction);
 - quantitative sensitive: one β-step is simulated by one λ-step, and conversely.

 In other linear λ-calculi, completeness of CBV translation fails!
 A step in the CbV fragment of those calculi need not correspond to a β^{v}-step.

[^1]: Conjecture: There still exists a relationship in CbV between $[t]^{v}$ and $\llbracket t^{V} \rrbracket$, but it should be

