1st Approach

2nd Approach

3rd Approach

Conclusion 00

Recent Epistemic Extensions of Answer Set Programming

Ezgi Iraz SU Sinop University, Turkey

LIRICA Seminar 2021 LIS, Marseille, France

31 May 2021

Introduction • 0 0 0 0 0 0 0 1st Approach

2nd Approach

3rd Approach

Conclusion 00

- 2 Kahl et al.'s Epistemic Specifications (ES18)
- Shen and Eiter's Epistemic Specifications (ES16)
- 4 Su's Epistemic Specifications (ES21)
- 5 Conclusion

1st Approach

2nd Approach

3rd Approach

Conclusion

ASP lacks expressivity [Gelfond 1991]

Example (Gelfond's eligibility program Π_G , ASP-version)

% university rules to decide eligibility for scholarship (X: arbitrary applicant)

 $eligible(X) \leftarrow highGPA(X).$ $eligible(X) \leftarrow fairGPA(X), minority(X).$ $\sim eligible(X) \leftarrow \sim highGPA(X), \sim fairGPA(X).$

% disjunctive info: an applicant data for a specific student called Mike

highGPA(mike) or fairGPA(mike).

% if eligibility not determined, then interview required (ASP attempt)

 $interview(X) \leftarrow not eligible(X), not \sim eligible(X).$

1st Approach

2nd Approach

3rd Approach

Conclusion

Quantification problem in ASP

Example (Mike's eligibility situation, ASP-version)

 Π_G :

- eligible \leftarrow highGPA.
- ② eligible ← fairGPA, minority.
- ~eligible \leftarrow ~fairGPA, ~highGPA.
- highGPA or fairGPA \leftarrow .
- Interview ← not eligible, not ~eligible.

has the following answer sets

$$AS(\Pi_G) = \left\{ \{ highGPA, eligible \}, \\ \{ fairGPA, interview \}
ight\}.$$

⇒ eligible? and ~eligible? undetermined
⇒ interview? undetermined too...

1st Approach

2nd Approach

3rd Approach

Conclusion 00

So, epistemic modalities are required in ASP...

Example (Mike's eligibility situation, ASP-version)

 Π_G :

- eligible \leftarrow highGPA.
- ② eligible \leftarrow fairGPA, minority.
- \sim eligible $\leftarrow \sim$ fairGPA, \sim highGPA.
- ④ highGPA or fairGPA \leftarrow .
- Interview ← not eligible, not ~eligible.

Therefore:

Π_G ≱ eligible Π_G ≱ ~eligible Π_G ≱ interview (counter-intuitive!)

 \Rightarrow wanted: quantification over possible answer sets...

1st Approach

2nd Approach

3rd Approach

Conclusion

Gelfond's solution [Gelfond 1991]

Example (Mike's scholarship eligibility revisited, EASP-version)

Π_{KG}:

- eligible \leftarrow highGPA.
- ② eligible ← minority, fairGPA.
- ③ ~eligible ← ~fairGPA, ~highGPA.
- ④ highGPA or fairGPA \leftarrow .
- Interview ← not K eligible, not K ~eligible.

will have slightly different answer sets

```
AS(\Pi_{KG}) = \{ \{ highGPA, eligible, interview \}, \}
```

{fairGPA, interview} }.

⇒ eligible? and ~eligible? *unknown* ⇒ interview? YES (intuitive!)

1st Approach

2nd Approach

3rd Approach

Conclusion

ASP lacks expressivity ctd. [Gelfond 2011]

Example (Closed World Assumption (CWA), ASP-version)

% p is assumed to be false if there is no evidence to the contrary. (ASP attempt)

$$\sim p \leftarrow \operatorname{not} p.$$
 (r_1)

Consider: $\Pi = \{r_1, r_2\}$ where $r_2 = p \text{ or } q$.

has the following answer sets

$$\mathsf{AS}(\Pi) = \{\{p\}, \{\sim p, q\}\}.$$

 \Rightarrow p? unknown

 \Rightarrow but also $\sim p$? *unknown* (counter-intuitive)

upshot: again quantification through answer sets is required....

1st Approach

2nd Approach

3rd Approach

Conclusion

Two different solutions [Gelfond 2011, Shen et al. 2016]

Example (CWA revisited , EASP-version)

% p is assumed to be false if there is no evidence to the contrary. (EASP attempt)

- $(r_1) \sim p \leftarrow \operatorname{not} M p.$ Gelfond's approach [LPNMR, 2011] $(r_2) \sim p \leftarrow \operatorname{not} K p.$ Shen and Eiter's approach [AlJ, 2016]
- Consider: $K \Pi = \{r_2, r_3\}$ where $r_3 = p \text{ or } q$.
- KΠ has the unique answer set

$$\mathsf{AS}(\mathsf{K}\,\mathsf{\Pi}) = \big\{\{\sim p,q\}\big\}.$$

Now, result is intuitive!

1st Approach •ooooooooo 2nd Approach

3rd Approach

Conclusion 00

2 Kahl et al.'s Epistemic Specifications (ES18)

3 Shen and Eiter's Epistemic Specifications (ES16)

4 Su's Epistemic Specifications (ES21)

5 Conclusion

1st Approach

2nd Approach

3rd Approach

Conclusion

Language of ES18 [Kahl et al., ICLP 2018] extended the language of ASP by epistemic modalities K and M

idea: quantify over all candidate answer sets and correctly represent *incomplete* information (*non-provability*)

K p --- p is *known* to be true.

M p --- p may be *believed* to be true.

• atoms: (extended) objective and subjective literals

1	L	g	G
<i>p</i> ~ <i>p</i>	1 not1	K1 M1	g not g

where p ranges over \mathbb{P} .

- strong negation ~
- default negation (aka, negation as failure) not

notation:

 $(ex-) \odot Lit$ — the set of all (extended) objective literals (ex-) $\Im Lit$ — the set of all (extended) subjective literals

1st Approach

2nd Approach

3rd Approach

Conclusion

Syntax of ES18

<u>rule:</u> a logical statement of the form $head \leftarrow body$

• a *rule* **r** of ES18 is of the following form:

 $l_1 \text{ or } \dots \text{ or } l_m \leftarrow e_1, \dots, e_n$

• head(r): disjunction of objective literals

body(r): conjunction of arbitrary literals

When m=0, head(r) = \perp and r: *constraint* (headless rule)

if body(r) of a constraint consists solely of extended sub.
 literals, i.e., G₁, ..., G_n, then r : subjective constraint.

• e.g., $\bot \leftarrow Kp$; $\bot \leftarrow Mp$, notKq; etc.

When n=0, body(r) = \top and r: *fact* (bodiless rule).

program: finite collection of rules

• finite set of EASP rules = *epistemic specifications*

= epistemic logic programs (ELPs)

1st Approach

2nd Approach 000000 3rd Approach

Conclusion 00

Truth conditions of ES18

For nonempty $\mathcal{A} \subseteq 2^{\mathbb{O}Lit}$, $1 \in \mathbb{O}Lit$, $L \in ex-\mathbb{O}Lit$, and $g \in \mathbb{S}Lit$,

• truth conditions:

$$\begin{array}{lll} \mathcal{A}, A \models 1 & \text{if} \quad 1 \in A; \\ \mathcal{A}, A \models \text{not} 1 & \text{if} \quad 1 \notin A; \\ \mathcal{A}, A \models \mathsf{KL} & \text{if} \quad \mathcal{A}, A' \models L \text{ for every } A' \in \mathcal{A}; \\ \mathcal{A}, A \models \mathsf{ML} & \text{if} \quad \mathcal{A}, A' \models L \text{ for some } A' \in \mathcal{A}; \\ \mathcal{A}, A \models \text{not} g & \text{if} \quad \mathcal{A}, A \not\models g. \end{array}$$

• equivalences:

$$\begin{aligned} \mathcal{A} &\models \mathsf{Ml} & \text{iff} \quad \mathcal{A} &\models \mathsf{not} \, \mathsf{Knot} \, \mathsf{l} \\ \mathcal{A} &\models \mathsf{not} \, \mathsf{Ml} & \text{iff} \quad \mathcal{A} &\models \mathsf{Knot} \, \mathsf{l} \end{aligned}$$

 \Rightarrow K and M are (1) dual and (2) interchangeable.

1st Approach

2nd Approach

3rd Approach

Conclusion

Kahl's reduct definition [Kahl, PhD thesis 2014]

Given $\mathcal{A} \subseteq 2^{OLit}$ and an epistemic logic program (ELP) Π :

• K-reduct $r^{\mathcal{R}}$ of an ES rule r w.r.t. \mathcal{R}

extended subjective literal (G)	if <i>true</i> in A	if <i>false</i> in A	
K1	replace by 1	delete rule	
not Kl	remove literal	replace by not 1	
M1	remove literal	replace by not not ${f l}$	
not M l	replace by not 1	delete rule	

idea: eliminate K and M (whereas in ASP, we eliminate not !)

$$\Pi^{\mathcal{A}} = \{ \mathbf{r}^{\mathcal{A}} : \mathbf{r} \in \Pi \}$$

remark:

K-reduct is rather complex and lacks an intuitive explanation.

1st Approach

2nd Approach

3rd Approach

Conclusion 00

Kahl et al.'s semantics approach [Kahl et al., ICLP 2018] • First. define:

 $Ep(\Pi) = \{ not K1 : K1 appears in \Pi \} \cup \{ MI : MI appears in \Pi \}.$

• Then, take its subset w.r.t. $\mathcal{A} \subseteq 2^{OLit}$

$$\operatorname{Ep}(\mathsf{\Pi})\big|_{\mathcal{A}} = \Phi_{\mathcal{A}} = \{\mathsf{G} \in \operatorname{Ep}(\mathsf{\Pi}) : \mathcal{A} \models \mathsf{G}\}.$$

• So, for a prototypical program

$$\Pi' = \{t \leftarrow \mathsf{K}\, p, \mathsf{M}\, q, \mathsf{not}\, \mathsf{K}\, s, \mathsf{not}\, \mathsf{M}\, t\},\$$

• we have:

$$\operatorname{Ep}(\Pi') = \{\operatorname{notK} p, \operatorname{M} q, \operatorname{notK} s, \operatorname{M} t\}.$$

• given
$$\mathcal{R}' = \{\{p, s\}, \{t, s\}\}$$
:

$$\mathbb{E}p(\Pi')\big|_{\mathcal{H}'} = \Phi_{\mathcal{H}'} = \{\operatorname{not} \mathsf{K}\, p, \mathsf{M}\, t\}.$$

1st Approach

2nd Approach

3rd Approach

Conclusion

Kahl et al.'s world views (K-WV) [Kahl et al., ICLP 2018]

• Finally, \mathcal{A} is a *K*-world view (K-WV) of a "constraint-free" Π if:

fixed point property

• $\mathcal{A} = AS(\Pi^{\mathcal{A}}) = \{A : A \text{ is an answer set of } \Pi^{\mathcal{A}}\}$

knowledge-minimising property

② there is no \mathcal{A}' such that $\mathcal{A}' = \mathsf{AS}(\Pi^{\mathcal{A}'})$ and $\Phi_{\mathcal{A}'} \supset \Phi_{\mathcal{A}}$.

1st Approach

2nd Approach

3rd Approach

Conclusion 00

Why "constraint-free" restriction?

- in ASP, constraints function regularly:
 - at most rule out answer-sets, violating them.
- in ES18, behaviour of constraints is not monotonic.

Example

Consider the following EASP rules:

$$a \text{ or } b \leftarrow .$$
 (r_1)

$$c \leftarrow Ka.$$
 (r_2)

- $\leftarrow \operatorname{not} c. \qquad (r_3)$
- $\Pi = \{r_1, r_2\}$ has a unique K-WV: $\{\{a\}, \{b\}\}$.
- if we add r₃, then we expect to have no K-WVs, but:
- $\Pi = \{r_1, r_2, r_3\}$ has a unique K-WV: $\{\{a, c\}\}$.

1st Approach

2nd Approach

3rd Approach

Conclusion

Some new language constructs in ES18

- So, effect of a constraint r over world views
 - may be additive or subtractive
- Solution by Kahl and Leclerc: world view constraints (WVCs)
 - in the form of subjective constraints
 - replace \leftarrow by \leftarrow^{WV}
 - $\overleftarrow{\leftarrow} \varphi$ is read: "it is not a world view if it satisfies φ "

Ex: $\stackrel{WV}{\leftarrow}$ notK p: "it is not a world view if p is not known" (any world view satisfying notK p should be eliminated)

1st Approach

2nd Approach

3rd Approach

Conclusion

WVCs can solve the constraint problem?

...to some extent! because only works for subjective constraints

• what about for $\leftarrow Kp$, q?

Definition (Kahl and Leclerc's restricted solution)

Let Π be an ELP containing WVCs such that $\Pi = \Pi_0 \cup \Pi_{wvc}$

- Π_0 is a constraint-free part of Π .
- Π_{wvc}: set of all WVCs occurring in Π

Then, \mathcal{A} is a K-WV of Π if

- $\textcircled{O} \ \mathcal{R} \text{ is a K-WV of } \Pi_0 \text{ and }$
- **2** \mathcal{A} satisfies every constraint in Π_{wvc} .

1st Approach

2nd Approach •00000 3rd Approach

Conclusion 00

2 Kahl et al.'s Epistemic Specifications (ES18)

Shen and Eiter's Epistemic Specifications (ES16)

4 Su's Epistemic Specifications (ES21)

5 Conclusion

1st Approach

2nd Approach

3rd Approach

Conclusion 00

Language of ES16 [Shen and Eiter, AIJ 2016]

differs from the language of ES18 as follows:

- instead of K and M, we have epistemic negation NOT
- NOT*p* (in ES16) corresponds to notK*p* (in ES18).

intuitive reading:

NOT p - - - p is *not proved* to be true.

- use the equivalences $notnotK \equiv K$ and $notKnot \equiv M$
- obtain the following equivalent transformations between:

ES18	K	not K	М	not M
ES16	notNOT	NOT	NOTnot	notNOTnot

• Programs of ES16-18 share the same syntax.

2nd Approach

3rd Approach

Conclusion 00

Shen and Eiter (SE)'s reduct definition

SE use ${\tt notK}$ (epistemic negation NOT) to minimise knowledge

• First, remember:

 $\texttt{Ep}(\Pi) = \{\texttt{not} \, \texttt{Kl} \, : \, \texttt{Kl} \, \texttt{appears} \, \texttt{in} \, \Pi\} \cup \{\texttt{Ml} \, : \, \texttt{Ml} \, \texttt{appears} \, \texttt{in} \, \Pi\}$

- Then, given $\mathcal{A} \subseteq 2^{\mathbb{O}Lit}$ (we call it a *guess*),
 - take its subset $\Phi_{\mathcal{R}} = \{G \in Ep(\Pi) : \mathcal{R} \models G\}$
- SE-reduct $r^{\Phi_{\mathcal{R}}}$ of an ES rule r w.r.t. $\Phi_{\mathcal{R}}$

idea: eliminate K and M (aligning with K-reduct)

epis. negation (G)	$if\;G\in\Phi_{\mathcal{R}}$	$if\;G\in \mathrm{Ep}(\Pi)\setminus \Phi_{\mathcal{R}}$
not K l	replace by $ extsf{T}$	replace by not 1
M1	replace by $ extsf{T}$	replace by not not 1

next form

$$\Pi^{\Phi_{\mathcal{R}}} = \{ \mathbf{r}^{\Phi_{\mathcal{R}}} : \mathbf{r} \in \Pi \}$$

1st Approach

2nd Approach

3rd Approach

Conclusion 00

New arrangement of SE-reduct

ext. sub. literal (G)	if <i>true</i> in A	if <i>false</i> in A
K1	replace by not not 1	delete rule
not K l	remove literal	replace by not ${f l}$
M1	remove literal	replace by not not 1
not M l	replace by not 1	delete rule

1st Approach

2nd Approach

3rd Approach 0000000000000000 Conclusion 00

SE's semantics approach [SE, AIJ 2016]

 \mathcal{A} is a *SE-world view* (SE-WV) of an ELP Π if:

fixed point property

• $\mathcal{A} = AS(\Pi^{\Phi_{\mathcal{R}}}) = \{A : A \text{ is an answer set of } \Pi^{\Phi_{\mathcal{R}}}\};$

knowledge-minimising property

 $\begin{array}{l} \textcircled{0} \quad \Phi_{\mathcal{A}} \text{ is maximal, i.e., for no other guess } \mathcal{A}', \text{ we have:} \\ \mathcal{A}' = \mathtt{AS}(\Pi^{\Phi_{\mathcal{A}'}}) \text{ and } \Phi_{\mathcal{A}'} \supset \Phi_{\mathcal{A}}. \end{array}$

 \Rightarrow but SE-WVs cannot treat well with ELPs including constraints...

1st Approach

2nd Approach

3rd Approach 0000000000000000 Conclusion

An example program with constraints

Example

Consider the following EASP rules:

- $\begin{array}{ccc} a \, \mathrm{or} \, b \leftarrow . & (r_1) \\ \leftarrow \, \mathrm{not} \, \mathsf{K} \, a. & (r_2) \end{array}$
- r_1 has a unique SE-WV: $\{\{a\}, \{b\}\}$.
- if we consider it with r₂:
- $\Pi = \{r_1, r_2\}$ has a unique SE-WV: $\{\{a\}\}$.

1st Approach

2nd Approach

Outline

3rd Approach

Conclusion 00

2 Kahl et al.'s Epistemic Specifications (ES18)

3 Shen and Eiter's Epistemic Specifications (ES16)

4 Su's Epistemic Specifications (ES21)

Conclusion

1st Approach

2nd Approach

3rd Approach

Conclusion 00

Novelty offered by ES21 [Su, Jelia 2019]

- nondual epistemic operators K and $\hat{\mathsf{K}}$
- more natural generalisation of ASP
 - our reduct definition is oriented to eliminate not
- knowledge minimisation technique from reflexive autoepistemic logic (nonmonotonic SW5, [Schwarz 1992])

1st Approach

2nd Approach

3rd Approach

Conclusion

Language of ES21

extended the language of ASP with epistemic modalities K and $\hat{\mathsf{K}}$

- K and \hat{K} are not dual: \hat{K} is not equivalent to notKnot.
- literals (λ) :objective literals (1) and subjective literals (g)

1	g
p ~p	K1 Ĥ1

where p ranges over \mathbb{P} .

• ES21 rules are of the following form:

 $\lambda_1 \text{ or } \dots \text{ or } \lambda_k \leftarrow \lambda_{k+1} , \dots , \lambda_m, \text{not } \lambda_{m+1} , \dots , \text{ not } \lambda_n$

• positive rules — without negation as failure (NAF) not

• (pos.) EASP program: finite collection of (pos.) EASP rules

 \Rightarrow ASP: EASP in which literals are restricted to objective literals

1st Approach

2nd Approach

3rd Approach

Conclusion

Positive ES21 programs

semantics: via stable S5 models

Definition (weakening of a point in an S5 model $\mathcal{A} \subseteq 2^{\mathbb{O}Lit}$)

Given a (subset) map $s : \mathcal{A} \to 2^{OLit}$ such that $s(A) \subseteq A$ for every $A \in \mathcal{A}$, $s \neq id$ on \mathcal{A} and $s|_{\mathcal{A} \setminus \{A\}} = id$, $\langle s[\mathcal{A}], s(A) \rangle$: weakening of \mathcal{A} at a point $A \in \mathcal{A}$. **notation:** $\langle s[\mathcal{A}], s(A) \rangle \triangleleft \langle \mathcal{A}, A \rangle$.

 $\mathsf{Ex:} \left\{ \underline{\emptyset}, \{q, r\} \right\} \lhd \left\{ \underline{\{p\}}, \{q, r\} \right\}.$

Definition (nonmono. satisfaction reln \models^* minimising truth)

Given a pointed S5 model $\langle \mathcal{R}, A \rangle$ and an EASP program Π , $\mathcal{R}, A \models^* \Pi$ iff

 $\ \, {\bf S}[\mathcal{A}], {\bf s}(A) \not\models \Pi \ \, \text{for every map s viz.} \ \, \langle {\bf s}[\mathcal{A}], {\bf s}(A) \rangle \triangleleft \langle \mathcal{A}, A \rangle.$

$$\mathsf{Ex:}\left\{\{p\}, \underline{\{r\}}\right\} \models^* q \text{ or } r.$$

Definition (generalisation of answer set defn to EASP)

 \mathcal{A} is a *minimal model* of Π if $\mathcal{A}, A \models^* \Pi$ for every $A \in \mathcal{A}$.

Example

Consider the following positive program Σ :

$$p \text{ or } q \leftarrow .$$

 $s \leftarrow q.$
 $r \leftarrow K p.$

Claim: $\{\{p\}, \{q, s\}\}$ is a minimal model of Σ : indeed,

- $\{\underline{\{p\}}, \{q, s\}\} \models \Sigma$ while its only weakening $\{\underline{\emptyset}, \{q, s\}\} \not\models \Sigma$.
- $\{\{p\}, \{q, s\}\} \models \Sigma$ while all its weakenings, i.e, $\{\{p\}, \{q\}\}, \{p\}, \{s\}\}$ and $\{\{p\}, \emptyset\}$ do not satisfy it.

 $\{\{p, r\}\}\$ and $\{\{q, s\}\}\$ are the other (unintended) minimal models of Σ .

 \Rightarrow minimality of truth does not guarantee intuitive results.

1st Approach

2nd Approach

3rd Approach

Conclusion 00

A quick introduction to SW5 models

An **SW5 model** $\mathcal{M} = \langle W, R, V \rangle$ is a Kripke model in which

• W: non-empty set of possible worlds;

• $W = C \cup \{a\}$: $C \neq \emptyset$.

- for every $w \in W$: $V(w) \subseteq \mathbb{P}$ a valuation, i.e.,
 - a set of propositional variables
- $R \subseteq W \times W$ a binary relation on W.

•
$$xRy$$
 iff $y \in C$ or $x = y$.

• $R = (W \times C) \cup (a, a).$

1st Approach

2nd Approach

3rd Approach

Conclusion

Cluster-decomposable Kripke models

Definition

C is a \mathcal{T} -cluster if $w\mathcal{T}u$ for every $w, u \in C$.

We can transform an SW5 model $\mathcal{M} = \langle W, \mathcal{T}, V \rangle$ into $\langle A, C, V \rangle$:

- C is a nonempty cluster
- $A = \emptyset$ or $A = \{a\}$
 - $\mathcal{T}(a) = W$ ('a can see any point in W including itself')
 - C can be accessed from every world in W C is final!
 - but a point in C cannot access $a \in A$.

1st Approach

2nd Approach

3rd Approach

Conclusion

Nonmonotonic SW5

Minimal model semantics over SW5 \Rightarrow 'nonmonotonicity'

Definition

 $\mathcal{M} = (W, \mathcal{T}, V)$ is preferred over a valuated cluster (C, V) in SW5

- $W = C \cup \{a\}$: $a \notin C$;
- $\mathcal{T} = (W \times C) \cup \{(a, a)\};$
- The valuations V agree on C;
- There exists $\varphi \in Prop$ s.t. $C \models \varphi$ and $\mathcal{M} \not\models \varphi$. (i.e., $a \not\models \varphi$.)

 \Rightarrow we write: $\mathcal{M} > (C, V)$.

Definition

(C, V) is a minimal model of a theory Γ in SW5 if

- $(C, V), x \models \Gamma$ for every $x \in C$ (i.e., $(C, V) \models \Gamma$);
- $\mathcal{M} \not\models \Gamma$ for every \mathcal{M} s.t. $\mathcal{M} > (C, V)$.

1st Approach

2nd Approach

3rd Approach

Conclusion

Definition (stable S5 model)

Let \mathcal{A} be an S5 model of a positive EASP program Π . Then, \mathcal{A} is a *stable S5 model* of Π if

truth-minimising condition

knowledge-minimising condition

any preferred SW5-extension of \mathcal{A} is not a minimal model of Π .

(i.e., for every $A' \in 2^{\mathbb{P}} \setminus \mathcal{A}, \mathcal{A}, A' \not\models \Pi$ or $\mathcal{A}, s(A') \models \Pi$ for some subset map s satisfying $s(A') \subset A'$ and $s|_{\mathcal{A}} = id$.)

- 1st cnd: truth-minimality intuition from ASP
- 2nd cnd: knowledge-minimality intuition from reflexive autoepistemic logic (nonmonotonic SW5)
- \Rightarrow our special S5 models are now stable w.r.t. truth and knowledge.

1st Approach

2nd Approach

3rd Approach

Conclusion

Positive ES21 programs ctd.

Example

Consider the following epistemic logic program $\boldsymbol{\Sigma}$ once again:

 $p \text{ or } q \leftarrow$ $s \leftarrow q$ $r \leftarrow K p$

 Σ has 3 min. models: $\mathcal{A}_1 = \{\{p\}, \{q, s\}\}, \mathcal{A}_2 = \{\{p, r\}\} \& \mathcal{A}_3 = \{\{q, s\}\}.$

- \mathcal{A}_2 is not stable: it has a preferred model $\mathcal{A}'_2 = \{\{p, r\}, \underline{\{q, s\}}\}_{SW5} (\mathcal{A}'_2 > \mathcal{A}_2) \text{ and } \mathcal{A}'_2 \text{ is also minimal.}$
- \mathcal{A}_3 is not stable: it has a preferred model $\mathcal{A}'_3 = \{\{q, s\}, \underline{\{p\}}\}_{SW5}$ $(\mathcal{A}'_3 > \mathcal{A}_3)$ and \mathcal{A}'_3 is also minimal.
- any preferred model of \mathcal{R}_1 is not a minimal model of Σ .
- \therefore \mathcal{R}_1 is the unique stable S5 model of $\Sigma.$

1st Approach

2nd Approach

3rd Approach

Conclusion

What if Π is not positive?

then we first take the reduct!

our reduct defn is oriented to eliminate NAF only as in ASP!

Definition (generalisation of the reduct definition of ASP)

Let Π be an epistemic logic program.

Let $\mathcal{A} \subseteq 2^{\mathbb{O}Lit}$ be nonempty and $A \in \mathcal{A}$. Then,

- the *reduct* Π^(A,A) of Π w.r.t. (A, A) is given by replacing every occurrence of not λ with
 - \perp if $\mathcal{A}, A \models \lambda$ (for $\lambda = 1$ if $A \models 1$; for $\lambda = K1$ if $\mathcal{A} \models K1$);
 - \top if $\mathcal{A}, A \not\models \lambda$ (for $\lambda = 1$ if $A \not\models 1$; for $\lambda = K1$ if $\mathcal{A} \not\models K1$).

• Thus, \mathcal{A} is a *minimal model* of Π if

 $\mathcal{A}, A \models^* \Pi^{\langle \mathcal{A}, A \rangle}$ for every $A \in \mathcal{A}$.

• The rest (knowledge-minimality) is the same.

1st Approach

2nd Approach

3rd Approach

Conclusion

Let's see an example!

Example

Consider the following EASP program Γ :

 $p \leftarrow \operatorname{not} \sim q$ $\sim q \leftarrow \operatorname{not} p$ $r \leftarrow \operatorname{not} \mathsf{K} p$

Claim: $\mathcal{A} = \{\{p, r\}, \{\sim q, r\}\}$ is a minimal model of Γ : indeed,

$\Gamma^{\{\{p,r\},\underline{\{\sim q,r\}}\}}: p \leftarrow \bot$	$\Gamma^{\{\{p,r\},\{\sim q,r\}\}}: p \leftarrow \top$
$\sim q \leftarrow \top$	$\sim q \leftarrow \perp$
$r \leftarrow \top$	$r \leftarrow \top$

{<u>{p,r}</u>, {~q,r}} ⊨ Γ^{{<u>{p,r}},{~q,r}}}, but all its weakenings do not.
 {{p, r}, <u>{~q, r}</u>} ⊨ Γ^{{{p,r},{<u>{~q,r}}}}, but all its weakenings do not.
</sup></u></sup></u>

1st Approach

2nd Approach

3rd Approach

Conclusion

How we deal with constraints?

epistemic logic program П	K-WVs	SE-WVs	S-WVs
$\Pi_1: p \text{ or } q$	$\{\{p\}, \{q\}\}$	$\{\{p\}, \{q\}\}$	$\{\{p\}, \{q\}\}$
p or q	none	{{ p }}	{{ p }}
\leftarrow not K p			
$\Pi_2: p \leftarrow \operatorname{not} q$	$\{\{p\}, \{q\}\}$	$\{\{p\}, \{q\}\}$	$\{\{p\}, \{q\}\}$
$q \leftarrow notp$			
r ← K p			$\{\{p, r\}\}$
$p \leftarrow \operatorname{not} q$	{{ <i>p</i> , <i>r</i> }}	{{ p , r}}	$\{\{p, r\}\}$
$q \leftarrow \operatorname{not} p$			
r ← K p			
\leftarrow not r			

1st Approach

2nd Approach

3rd Approach

Conclusion

Examples continued...

epis. spec. ∏	K-WVs	SE-WVs	S-WVs
$\Pi_1 : p \leftarrow \text{not } q$			
$q \leftarrow not p$	$\{\{p, r\}, \{q, r\}, \{p, s\}, \{q, s\}\}$	same	same
$rors \leftarrow not Kp$,		
Π_2 : $p \leftarrow \text{not } q$			
$q \leftarrow not p$			
$r \lor s \leftarrow \operatorname{not} K p$	{{ p }}	{{ p }}	{{ p }}
← r		()	
← S			

- What would we expect? no world views/AEEMs
- Intuitive? no!

1st Approach

2nd Approach

3rd Approach

Conclusion 00

Discussion: inclusion of belief operator

let's call our belief operator B :

Can consider B as dual of K (same as M in ES), i.e.,

- B is equivalent to not K not
- can treat it neither positive nor negative construct (similar to notnot in ASP)
- ? shoud we take its reduct? probably YES!
- complicated because then we have to define how to take the reduct of K not

② can consider B (similar to \hat{K} in ES21) as non-dual of K

- reasonable because EASP is a 3-valued formalism
- treat it as a positive subjective literal like K p
- and we do not take its reduct
- ? but then $p \leftarrow Bp$ has a unique ESM { \emptyset }. Intuitive?
- remember that $p \leftarrow Mp$ has a unique SE-WV and K-WV: {{p}.

1st Approach

2nd Approach

3rd Approach

Conclusion

2 Kahl et al.'s Epistemic Specifications (ES18)

Shen and Eiter's Epistemic Specifications (ES16)

4 Su's Epistemic Specifications (ES21)

5 Conclusion

1st Approach

2nd Approach 000000 3rd Approach

Conclusion

To sum it up

• many different semantics approaches for ELPs

- most of them are obsolete today:
 - [Gelfond 1991,1994,2011; Kahl et al. 2014,2016, Wang&Zhang 2005,...]
- successful candidates (to some extent): [Kahl 2018, SE 2016, FHS 2015, CFF 2019]
 - cannot cope with programs including constraints except [Cabalar et al., 2019]
- Our approach:
 - propose a more standard generalisation of ASP
 - but cannot offer a solution to the constraint problem
 - still, functionality of constraints can be discussed in ES (see [Shen and Eiter, 2019])

Thank you!